

Norma de Distribuição Unificada

NDU - 001

APRESENTAÇÃO

Esta Norma Técnica apresenta os requisitos mínimos e as diretrizes necessárias exigidas pelo Grupo Energisa, para o fornecimento de energia elétrica em baixa tensão, através de redes de distribuição aérea e subterrânea às instalações consumidoras localizadas em sua área de concessão.

O objetivo é estabelecer padrões e procedimentos de acesso, critérios técnicos, operacionais e condições necessárias para a elaboração do projeto e execução das entradas de serviço individuais das unidades consumidoras de baixa tensão, a fim de possibilitar fornecimento seguro de energia elétrica nas áreas de concessão do Grupo Energisa, sempre em obediência às normas da ABNT - Associação Brasileira de Normas Técnicas, as normas internacionais reconhecidas, e as Resoluções Normativas da Agência Nacional de Energia Elétrica - ANEEL.

Esta norma técnica poderá, em qualquer tempo, sofrer alterações por razões de ordem técnica ou legal, motivo pelo qual os interessados devem, periodicamente, consultar as concessionárias do Grupo Energisa S.A. quanto a eventuais modificações.

As cópias e/ou impressões parciais ou em sua íntegra deste documento não são controladas.

A presente revisão desta norma técnica é a versão 7.0, datada de novembro de 2024.

João Pessoa - PB, 01 de novembro de 2024.

GTD - Gerência Técnica de Distribuição

Esta norma técnica, bem como as alterações, poderá ser acessada através do código abaixo:

Equipe Técnica de Revisão da NDU-001 (Versão 7.0)

Gabriel de Oliveira Ramalho

Grupo Energisa

Gilberto Teixeira Carrera

Grupo Energisa

Stanley Travassos de Oliveira

Grupo Energisa

Vanessa da Costa Marques

Grupo Energisa

Membros do Grupo de Trabalho

Álvaro Daniel Hartmann Siliprandi

Energisa Rondônia

Arídio Delfino da Silva Júnior

Energisa Mato Grosso do Sul

Claudio Alberto Santos de Souza

Energisa Sul-Sudeste

Eberson Ricardo Patalo

Energisa Mato Grosso do Sul

Higor José Freire da Silva

Energisa Tocantins

Jardiele dos Santos Cavalcante Acioly

Energisa Paraíba

Jefferson de Assis Pinto

Energisa Mato Grosso

Johnata Rodrigues Gomes

Energisa Acre

Nelson Muniz dos Santos

Energisa Sul-Sudeste

Rildo Gonçalves Barroso

Energisa Minas Rio

Ronnie César Feitosa Santos

Energisa Sergipe

Roverlândio Santos Melo

Energisa Sergipe

Valdei Xavier de Oliveira

Energisa Minas Rio

Aprovação Técnica

Ademálio de Assis Cordeiro

Grupo Energisa

Alberto Alves Cunha

Energisa Tocantins

Antônio Maurício de Matos Gonçalves

Energisa Acre

Erika Ferrari Cunha

Energisa Sergipe

Fabio Lancelotti

Energisa Minas Rio

Fabrício Sampaio Medeiros

Energisa Mato Grosso

Fernando Espíndula Corradi

Energisa Rondônia

Guilherme Damiance Souza

Energisa Sul-Sudeste

Paulo Roberto dos Santos

Energisa Mato Grosso do Sul

Rodrigo Brandão Fraiha

Energisa Paraíba

Sumário

1	. CAMPO DE APLICAÇAO	8
2	. VIGÊNCIA	8
3		
	3.1. Coordenação de Normas e Padrões Construtivos	9
	3.2. Departamento de Serviços Comerciais	
	3.3. Departamento de Construção e Manutenção da Distribuição	
	3.4. Departamento de Operação	
	3.5. Assessoria de Planejamento e Orçamento	
4	. REFERÊNCIAS NORMATIVAS	
	4.1. Referências Regulatórias	10
	4.2. Normas Técnicas Brasileiras	10
	4.3. Normas Técnicas do Grupo Energisa	12
5	. DEFINIÇÕES	13
	5.1. Aterramento	13
	5.2. Baixa tensão de distribuição (BT)	13
	5.3. Caixa de medição	13
	5.4. Cabo multiplexado	13
	5.5. Caixa de inspeção de aterramento	13
	5.6. Caixa de passagem	13
	5.7. Carga instalada	14
	5.8. Concessionária ou permissionária	14
	5.9. Condomínio	14
	5.10. Consumidor	14
	5.11. Demanda	14
	5.12. Desmembramento	14
	5.13. Disjuntor termomagnético	15
	5.14. Dispositivo de proteção contra surtos elétricos (DPS)	15
	5.15. Disjuntor diferencial residual (DR)	
	5.16. Edificação	15
	5.17. Edificação individual	
	5.18. Edificações agrupadas ou agrupamentos	. 15
	5.19. Entrada de serviço da unidade consumidora	15

5.20. Imóvel	16
5.21. Ligação definitiva	16
5.22. Ligação provisória	16
5.23. Limites de propriedade	16
5.24. Livre e fácil acesso	16
5.25. Medidor	16
5.26. Padrão de entrada	17
5.27. Pedido de ligação ou solicitação de fornecimento	17
5.28. Pontalete	17
5.29. Ponto de entrega de energia	17
5.30. Poste auxiliar ou poste particular	17
5.31. Potência	17
5.32. Ramal de entrada	18
5.33. Ramal de entrada embutido	18
5.34. Ramal de entrada subterrâneo	18
5.35. Ramal de conexão	18
5.36. Ramal de saída	18
5.37. Unidade consumidora	18
5.38. Via pública	19
6. CONDIÇÕES GERAIS DE FORNECIMENTO	
6.1. Regulamentação	19
6.2. Tensões de fornecimento	
6.3. Limites de fornecimento	22
6.4. Tipos de atendimento	22
6.5. Categorias de atendimento	22
6.6. Tipos e limites de atendimento	22
6.7. Ligações de cargas especiais	26
6.8. Consumidores irrigantes	27
6.9. Aumento de carga	
6.10. Fator de potência	
6.11. Entrada de serviço	
6.12. Condições não permitidas	
6.13. Recarga para veículos elétricos	
6.14. Geração Própria	32

7. ATENDIMENTO AO CLIENTE	32
7.1. Solicitação	32
7.2. Ligação de canteiro de obras	33
7.3. Fornecimento provisório	34
7.4. Vistoria	34
8. CRITÉRIOS PARA EXECUÇÃO DO PADRÃO DE ENTRADA	34
8.1. Disposições das Entradas de Serviço	34
8.2. Postes e Pontaletes	35
8.3. Ramal de Conexão Aéreo	37
8.4. Ponto de Conexão	41
8.5. Ramal de Entrada	41
8.6. Caixas para equipamento de medição e/ou proteção	48
8.7. Proteção da entrada de serviço	49
8.8. Proteção de motores	52
8.9.MEDIÇÃO	52
8.10. Aterramento	53
8.11. BOMBA DE INCÊNDIO	55
9. DETERMINAÇÃO DA DEMANDA	56
9.1. Cálculo de Demanda da Unidade Consumidora	56
10. TABELAS.	58
12. DESENHOS.	95
13. ANEXOS	168
HISTÓRICO DE VERSÕES DESTE DOCUMENTO	171

1. CAMPO DE APLICAÇÃO

Esta norma estabelece os critérios e procedimentos técnicos exigidos pelas empresas do Grupo Energisa para o fornecimento de energia elétrica em baixa tensão a edificações de uso individual, com potência instalada até 75 kW. Esta norma deverá ser seguida na elaboração de projetos e execução das instalações de entradas de serviço das unidades consumidoras em toda a área de concessão da Energisa.

Para os clientes que desejem fornecimento de energia elétrica a edificações em múltiplas unidades consumidoras, deverão seguir os critérios técnicos da NDU 003 - Fornecimento de Energia Elétrica em Tensão Primária e Secundária a Agrupamentos ou Edificações de Múltiplas Unidades Consumidoras.

Os casos não previstos nesta norma, ou aqueles que pelas características exijam tratamento à parte, deverão ser previamente encaminhados à Concessionária, através de seus escritórios locais, para apreciação conjunta da área de projetos/área de estudos. Eles serão objeto de análise prévia e decisão por parte da Concessionária, que tem o direito de rejeitar toda e qualquer solução que não atenda às condições técnicas exigidas por ela.

2. VIGÊNCIA

Esta Norma Técnica entra em vigor a partir da data de sua publicação e revoga as versões anteriores.

Novas edições e/ou alterações em normas ou especificações técnicas, serão comunicadas aos consumidores e demais usuários, fabricantes, distribuidores, comerciantes de materiais e equipamentos padronizados, técnicos em instalações elétricas e demais interessados, por meio da página de Normas Técnicas no site da Energisa.

Orientamos que os interessados deverão, periodicamente, consultar o site da Energisa para obter as versões mais recentes dos documentos normativos.

3. RESPONSABILIDADES

3.1. Coordenação de Normas e Padrões Construtivos

Estabelecer as normas e os critérios técnicos exigíveis para o fornecimento de energia elétrica em baixa tensão a edificações de uso individual, com potência instalada até 75 kW, conforme a regulação vigente. Coordenar o processo referente a revisões desta norma.

3.2. Departamento de Serviços Comerciais

Cooperar no processo de revisão desta norma. Deve desempenhar as atividades de fiscalização e atendimento ao cliente, zelando pelos critérios e recomendações definidas nesta norma, e coordenar o processo, acionando os demais departamentos nas suas atribuições.

3.3. Departamento de Construção e Manutenção da Distribuição

Cooperar no processo de revisão desta norma. Desempenhar as atividades relacionadas à análise de projetos, fiscalização e orçamentação de obras, referente ao processo de melhoria, expansão e manutenção dos sistemas de distribuição de energia elétrica.

3.4. Departamento de Operação

Cooperar no processo de revisão desta norma. Desempenhar as atividades relacionadas ao sistema de medição e fiscalização de acordo com os critérios e recomendações definidas nesta norma técnica.

3.5. Assessoria de Planejamento e Orçamento

Cooperar no processo de revisão desta norma. Desempenhar as atividades relacionadas ao planejamento do sistema elétrico.

4. REFERÊNCIAS NORMATIVAS

4.1. Referências Regulatórias

- Resolução Normativa nº 1.000, de 07 de dezembro de 2021 Estabelece as Regras de Prestação do Serviço Público de Distribuição de Energia Elétrica;
- Resolução Normativa nº 956, de 07 de dezembro de 2021 Estabelece os Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - PRODIST;
- Norma Regulamentadora NR 10 Segurança em Instalações e Serviços em Eletricidade;
- Lei N.º 11.337, de 26/07/2006, determina a obrigatoriedade de as edificações possuírem sistema de aterramento e instalações elétricas compatíveis com a utilização de condutor-terra de proteção, bem como torna obrigatória a existência de condutor-terra de proteção nos aparelhos elétricos especificados.

4.2. Normas Técnicas Brasileiras

- ABNT NBR 5410/2004 Instalações Elétricas de Baixa Tensão;
- ABNT NBR 5419/2015 Proteção Contra Descargas Atmosféricas;
- ABNT NBR 5597/2013 Eletroduto De Aço-Carbono E Acessórios, Com Revestimento Protetor E Rosca NPT — Requisitos;
- ABNT NBR 5598/2011 Eletroduto De Aço-Carbono E Acessórios, Com Revestimento Protetor E Rosca BSP — Requisitos;
- ABNT NBR 6251/2018 Cabos de Potência com Isolação Extrudada para Tensões de 1 kV a 35 kV - Requisitos Construtivos;

- ABNT NBR 7285/2016 Cabos de Potência com Isolação Extrudada de Polietileno Termofixo (XLPE) para Tensão de 0,6/1 kV - Sem Cobertura -Requisitos de Desempenho;
- ABNT NBR 7286/2022 Cabos de Potência com Isolação Extrudada de Borracha Etilenopropileno (EPR, HEPR ou EPR 105) para Tensão de 0,6/1 kV - Sem Cobertura - Requisitos de Desempenho;
- ABNT NBR 7287/2023 Cabos de Potência com Isolação Extrudada de Polietileno Reticulado (XLPE) para Tensões de 1 kV a 35 kV - Requisitos de Desempenho;
- ABNT NBR 7288/2018 Cabos de Potência com Isolação Sólida Extrudada de Cloreto de Polivinila (PVC) ou Polietileno (PE) para Tensões de 1 kV a 6 kV -Especificação;
- ABNT NBR 8182/2011 Cabos de Potência Multiplexados Autossustentados com Isolação Extrudada de PE ou XLPE, para Tensões até 0,6/1 kV - Requisitos D;
- ABNT NBR 10676/2011 Fornecimento de Energia a Edificações Individuais em Tensão Secundária - Rede de Distribuição Aérea;
- ABNT NBR 13534/2008 Instalações Elétricas de Baixa Tensão Requisitos
 Específicos para Instalação em Estabelecimentos Assistenciais de Saúde;
- ABNT NBR 14039/2021 Instalações Elétricas de Média Tensão de 1,0 kV a 36,2 kV;
- ABNT NBR 15688/2012 Redes de Distribuição Aérea de Energia Elétrica com Condutores Nus;
- ABNT NBR 15465/2020 Sistemas de Eletrodutos Plásticos para Instalações
 Elétricas de Baixa Tensão Requisitos de Desempenho;
- ABNT NBR 15716 Cabos Concêntricos para Ramais de Consumidores com Isolação Interna de XLPE e Isolação Externa de PE ou XLPE, para Tensões até 0,6/1 kV - Requisitos de Desempenho;

- ABNT NBR 16752/2020 Desenho Técnico Requisitos para Apresentação em Folhas de Desenho;
- ABNT NBR IEC 60497-2/2013 Dispositivo de Manobra e comando de baixa tensão Parte 2: Disjuntores;
- ABNT NBR IEC 60898/2019 Disjuntores para Proteção de Sobrecorrentes para Instalações Domésticas e Similares;
- ABNT NBR IEC 61000-4-5/2020 Compatibilidade eletromagnética (EMC) Parte 4-5: Ensaios e técnicas de medição Ensaio de imunidade a surtos;
- ABNT NBR IEC 61643-1/2021 Dispositivos de proteção contra surtos em baixa tensão Parte 1: Dispositivos de proteção conectados a sistemas de distribuição de energia de baixa tensão - Requisitos de desempenho e métodos de ensaio.

4.3. Normas Técnicas do Grupo Energisa

- NDU-002 Fornecimento de Energia Elétrica em Tensão Primária;
- NDU-003 Fornecimento de Energia Elétrica em Tensão Primária e Secundária a Agrupamento ou Edificações de Múltiplas Unidades Consumidoras;
- ETU-159.2 Conector terminal de cobre tipo cabo-barra à compressão para rede até 36,2 kV;
- ETU-176 Fita e fecho de aço inoxidável;
- ETU 180.1 Postes auxiliares em concreto para entrada de serviço até 1,0 kV;
- ETU 180.2 Postes auxiliares para entrada de serviço até 1,0 kV;
- ETU 180.3 Postes auxiliar em PRFV para entrada de serviço até 1,0 kV;
- ETU 187.1 Caixa para medição de energia elétrica policarbonato;
- PT 003/2017 Lista de fornecedores homologados de caixas metálicas e de policarbonato.

5. DEFINIÇÕES

5.1. Aterramento

Ligação à terra do neutro da rede e o da instalação consumidora.

5.2. Baixa tensão de distribuição (BT)

Tensão entre fases cujo valor eficaz é igual ou inferior a 2,3 kV. (Módulo 1, REN 956/2021).

5.3. Caixa de medição

Caixa destinada à instalação do medidor de energia e seus acessórios, bem como do dispositivo de proteção.

5.4. Cabo multiplexado

Cabo de cobre ou alumínio, formado pela reunião de um, dois ou três condutores fase em torno do condutor neutro e sustentação, com isolação constituída por composto extrudado à base de polietileno termoplástico (PE) ou polietileno reticulado (XLPE).

5.5. Caixa de inspeção de aterramento

É o compartimento enterrado, com dimensões insuficientes para pessoas trabalharem em seu interior, destinada para conexão do condutor de aterramento com a haste.

5.6. Caixa de passagem

Caixa destinada a facilitar a passagem dos condutores do ramal subterrâneo.

5.7. Carga instalada

Soma das potências nominais dos equipamentos elétricos instalados na unidade consumidora e em condições de entrar em funcionamento, expressa em quilowatts (kW).

5.8. Concessionária ou permissionária

Agente titular de concessão federal para prestar o serviço público de distribuição de energia elétrica, de agora em diante denominado distribuidora.

5.9. Condomínio

Chama-se de "condomínio" loteamento fechado, cujas vias internas de acesso as unidades não são consideradas públicas e que as partes comuns são propriedades dos condôminos e por eles administrados.

5.10. Consumidor

Pessoa física ou jurídica, de direito público ou privado, legalmente representada, que solicite o fornecimento de energia ou o uso do sistema elétrico, assumindo as obrigações decorrentes deste atendimento à(s) sua(s) unidade(s) consumidora(s), segundo disposto nas normas e nos contratos pertinentes.

5.11. Demanda

É a média das potências elétricas, ativas ou reativas, solicitadas ao sistema elétrico, pela parcela de carga instalada em operação na unidade consumidora, durante um intervalo de tempo especificado.

5.12. Desmembramento

Subdivisão de gleba em lotes destinados à edificação, com aproveitamento do sistema viário existente, desde que não implique a abertura de novas vias e logradouros públicos, nem prolongamento, modificação ou ampliação dos já existentes.

5.13. Disjuntor termomagnético

Dispositivo de manobra e proteção, capaz de conduzir correntes em condições normais e interrompê-las automaticamente em condições anormais.

5.14. Dispositivo de proteção contra surtos elétricos (DPS)

Dispositivo para proteção de ondas transitórias de corrente elétrica, tensão ou potência que se propagam ao longo de uma linha ou circuito e são caracterizadas por um aumento rápido seguido por um decrescimento mais lento.

5.15. Disjuntor diferencial residual (DR)

Dispositivo de proteção utilizado em instalações elétricas, permitindo desligar um circuito sempre que seja detectada uma corrente de fuga superior ao valor nominal.

5.16. Edificação

É toda e qualquer construção, reconhecida pelos poderes públicos, utilizada por um ou mais consumidores.

5.17. Edificação individual

Edificação reconhecida pelos poderes públicos, constituída por uma unidade consumidora, construída em um único terreno.

5.18. Edificações agrupadas ou agrupamentos

Conjunto de edificações reconhecidas pelo poder público, constituído por duas ou mais unidades consumidoras, construídas no mesmo terreno ou em terrenos distintos sem separação física entre eles juridicamente demarcada pela prefeitura e com área de circulação comum às unidades, sem caracterizar condomínio.

5.19. Entrada de serviço da unidade consumidora

É o conjunto de condutores, equipamentos e acessórios, compreendidos entre o ponto de derivação da rede secundária e a medição/proteção.

5.20. Imóvel

Bem físico e tangível, referindo-se a uma parcela de terra e/ou a qualquer construção ou estrutura permanente sobre essa terra.

5.21. Ligação definitiva

As ligações definitivas correspondem às ligações das unidades consumidoras, com medição em caráter definitivo, conforme padrões indicados nesta norma.

5.22. Ligação provisória

A concessionária poderá considerar como fornecimento provisório o que se destina ao atendimento de eventos temporários, tais como: festividades, circos, parques de diversões, exposições, canteiro de obras ou similares, estando o atendimento condicionado à existência de capacidade do sistema de distribuição e disponibilidade de potência contratada pela distribuidora.

5.23. Limites de propriedade

São as demarcações que separam a propriedade do consumidor da via pública e dos terrenos adjacentes de propriedade de terceiros, no alinhamento designado pelos poderes públicos.

5.24. Livre e fácil acesso

Acesso de empregados e prepostos da concessionária no local da medição, para fins de ligação, suspensão de fornecimento, leitura e inspeções necessárias, sem qualquer tipo de interferência e/ou impedimento físico, a qualquer tempo.

5.25. Medidor

É o aparelho instalado pela concessionária, que tem por objetivo medir e registrar o consumo de energia elétrica ativa e/ou reativa.

5.26. Padrão de entrada

É a instalação compreendendo o ramal de entrada, poste ou pontalete particular, caixas, dispositivos de proteção, aterramento e ferragens, de responsabilidade dos consumidores, preparada de forma a permitir a ligação das unidades consumidoras à rede da concessionária, conforme apresentado no DESENHO 03.

5.27. Pedido de ligação ou solicitação de fornecimento

É o ato formal, através do qual o consumidor solicita da concessionária as providências para o fornecimento de energia elétrica as suas instalações.

5.28. Pontalete

Suporte instalado na edificação do consumidor com a finalidade de fixar e elevar o ramal de conexão.

5.29. Ponto de entrega de energia

É o ponto de conexão do sistema elétrico da concessionária com as instalações elétricas da unidade consumidora, caracterizando-se como o limite de responsabilidade do fornecimento.

5.30. Poste auxiliar ou poste particular

É o poste situado na propriedade do consumidor, com um afastamento máximo de 150 mm em relação ao limite com a via pública, com a finalidade de fixar, elevar ou desviar o ramal de conexão.

5.31. Potência

Quantidade de energia elétrica solicitada na unidade de tempo, expressa em quilowatts (kW).

5.32. Ramal de entrada

Conjunto de condutores e acessórios, de propriedade do consumidor, instalados a partir do ponto de entrega até a proteção e medição.

5.33. Ramal de entrada embutido

É o ramal de entrada instalado dentro de eletroduto, que não passa pelo solo, sendo destinado ao atendimento da unidade consumidora.

5.34. Ramal de entrada subterrâneo

É o ramal de entrada instalado dentro de eletroduto que passa pelo solo.

5.35. Ramal de conexão

Conjunto de condutores e acessórios instalados entre o ponto de derivação do sistema de distribuição da distribuidora e o ponto de conexão.

5.36. Ramal de saída

Condutores e acessórios compreendidos entre a caixa de medição e a caixa de distribuição.

5.37. Unidade consumidora

Conjunto composto por instalações, ramal de entrada, equipamentos elétricos, condutores, acessórios e, no caso de conexão em tensão maior ou igual a 2,3 kV, a subestação, sendo caracterizado por:

- a) recebimento de energia elétrica em apenas um ponto de conexão;
- b) medição individualizada;
- c) pertencente a um único consumidor; e
- d) localizado em um mesmo imóvel ou em imóveis contíguos.

(Resolução Normativa n°1.000/2021 - ANEEL)

5.38. Via pública

É toda parte da superfície destinada ao trânsito público, oficialmente reconhecida e designada por um nome ou número, e conforme a legislação em vigor.

6. CONDIÇÕES GERAIS DE FORNECIMENTO

6.1. Regulamentação

- a) Antes do início da obra civil da edificação, é de interesse do futuro consumidor entrar em contato com a Energisa a fim de se informar quanto aos detalhes desta norma aplicáveis ao seu caso, bem como, das condições comerciais para sua ligação e do pedido de ligação.
- b) O padrão de entrada somente será ligado estando em conformidade com esta norma. As instalações elétricas internas após a medição e a proteção são de responsabilidade do consumidor conforme Art. 26 da resolução ANEEL N°. 1.000/2021.
- c) A proteção geral da unidade consumidora, utilizada na construção ou reforma do padrão de medição, é de inteira responsabilidade do consumidor. Assim como o fornecimento do material para substituição em caso de manutenção emergencial.
- d) O atendimento ao pedido de ligação não transfere a responsabilidade técnica à Energisa, quanto a segurança e integridade das instalações elétricas internas da unidade consumidora.
- e) Não é permitida a ligação de mais de um imóvel em um único medidor, com exceção de imóveis contíguos pertencentes a um único consumidor.
- f) A entrada de serviço que em consequência de decisões jurídicas ou desmembramento de terrenos ficar em propriedade de terceiros, será passível de correção no seu todo ou em parte, a critério da Energisa, sob responsabilidade do consumidor.

- g) O consumidor é responsável pelo zelo do ramal de entrada, caixa para medição, poste, dispositivos de proteção e do(s) equipamento(s) mantido(s) sob lacre, sendo que o acesso a este(s) somente é permitido à Energisa.
- h) Não é permitida a extensão das instalações elétricas de uma unidade consumidora para além dos limites de sua propriedade ou a propriedade de terceiros, mesmo que o fornecimento de energia seja gratuito
- i) O consumidor deve permitir, em qualquer tempo, o livre acesso dos representantes da Energisa, devidamente credenciados, às instalações elétricas de sua propriedade, fornecendo-lhes os dados e informações solicitadas, referentes ao funcionamento dos aparelhos e da instalação.
- j) Se após a ligação da unidade consumidora, for constatado que determinadas cargas causam perturbações no fornecimento regular do sistema elétrico da Energisa, esta pode exigir, a seu exclusivo critério, que tais cargas sejam desligadas até que o sistema de fornecimento seja adequado, às expensas do consumidor
- k) Será necessário a apresentação de autorização do órgão ambiental competente e gestor da unidade de atendimento para a(s) ligação (ões) da(s) unidade(s) consumidora(s) e/ou padrão (ões) de entrada de energia elétrica situado (s) em Área(s) de Preservação Permanente (APP).
- Os casos n\u00e3o especificamente abordados nesta norma ser\u00e3o objetos de consulta \u00e0 Energisa.
- m) À Distribuidora é reservado o direito de modificar esta Norma, total ou parcialmente, a qualquer tempo, considerando a constante evolução da técnica dos materiais e equipamentos.

6.2. Tensões de fornecimento

Para a conexão, devem ser seguidas as condições a seguir:

a) As tensões secundárias das empresas do Grupo Energisa estão apresentadas na Tabela 1.

TABELA 1 - Tensão Secundária das UNs

Tensão (V)		Empresas do Grupo Energisa								
Tensão BT Rede Trifásica	380 / 220		EMR		EMT	EPB	ESE			ETO
	220 / 127			EMS				ERO	ESS	
rensão bi	440 / 220									ETO
	254 / 127			EMS	EMT		ESE		ESS	
	240 / 120	EAC						ERO		
	230*		EMR			EPB				
	230 / 115		LIMIX				ESE			

(*) Tensão Fase/Neutro

Legenda:

EAC - Energisa Acre ERO - Energisa Rondônia

EMR - Energisa Minas Rio ESE - Energisa Sergipe

EMS - Energisa Mato Grosso do Sul ESS - Energisa Sul Sudeste

EMT - Energisa Mato Grosso ETO - Energisa Tocantins

EPB - Energisa Paraíba

NOTAS:

- I. A tensão de 380/220 V está disponível em algumas áreas do interior do estado de Mato Grosso e Sergipe, sendo que sua utilização deverá ser submetida à aprovação prévia da Concessionária.
- II. As tensões 380/220 V, 220/127 V, 230/115 V e 230 V estão disponíveis em algumas áreas de concessão da EMR. É necessário consultar com a distribuidora local a disponibilidade de atendimento na região.

III. Esta padronização se aplica às redes de distribuição de baixa tensão, tanto em áreas urbanas quanto rurais, para circuitos monofásicos, bifásicos e trifásicos.

6.3. Limites de fornecimento

O fornecimento de energia será feito em tensão secundária de distribuição, para instalações com carga instalada igual ou inferior a 75 kW, ressalvados os casos previstos na legislação vigente.

6.4. Tipos de atendimento

Serão três os tipos de atendimento, a saber:

- Tipo M (dois fios uma fase e neutro)
- Tipo B (três fios duas fases e neutro)
- Tipo T (quatro fios três fases e neutro)

6.5. Categorias de atendimento

As categorias de atendimentos são definidas conforme as Tabelas 16 a 23, através das cargas instaladas para as unidades monofásicas e bifásicas e de acordo com a demanda calculada para as unidades trifásicas.

6.6. Tipos e limites de atendimento

Para se determinar a modalidade de fornecimento ao consumidor, deverá considerar:

- A carga total instalada, em quilowatts (kW), para as categorias monofásicas e bifásicas;
- A demanda calculada, em quilovolt-ampère (kVA), para as categorias trifásicas.

Em ambos os casos, a carga instalada ou a demanda deverá ser declarada no pedido de ligação, conforme classificação a seguir.

Para situações que não se enquadram nos tipos abaixo, é necessário consultar a Concessionária.

6.6.1. Consumidores situados em localidades atendidas a partir de rede de distribuição trifásica

a) Tipo M:

Consumidores a serem atendidos a 2 fios (fase + neutro) 127 V, com carga instalada de até 8,80 kW conforme Tabela 16, e a 2 fios (fase + neutro) 220 V com carga instalada até 15,40 kW conforme Tabela 18, e que não constem:

- Soma das potências dos motores monofásicos superior a 2 cv;
- Máquina de solda à transformador com potência superior a 2 kVA.

b) Tipo B

Consumidores a serem atendidos a 3 fios (2 fases + neutro), que não se enquadrem no tipo M, com carga instalada de até 17,70 kW (220/127 V) conforme Tabela 16 e até 26,30 kW (380/220 V) conforme Tabela 18, e que não constem:

- Aparelhos vetados aos consumidores do tipo M, alimentados em tensão fase e neutro;
- Soma das potências dos motores monofásicos de 220 V superior a 5 cv;
- Máquina de solda a transformador alimentada em 220 V com potência superior a 8,0 kW.

c) Tipo T

Consumidores a serem atendidos a 4 fios (3 fases + neutro), não classificados nos tipos M e B, com tensão 220/127 V ou 380/220 V, com demanda provável de até 81,5 kVA, de acordo com as Tabelas 16 e 18, e que <u>não</u> constem em:

 Aparelhos vetados aos consumidores do tipo M e B, se alimentados em tensão fase e neutro;

- Soma das potências dos motores elétricos superior a 30 cv;
- Máquina de solda tipo motor gerador com potência superior a 7,5 cv;
- Máquina de solda a transformador, 220 V 2 fases, 220 V 3 fases, ou 380 V 3 fases, ligação v v invertida com potência superior a 15 kVA;
- Máquina de solda a transformador 220 V 3 fases, ou 380 V 3 fases, com retificação em ponte trifásica com potência superior a 7,5 kVA.

NOTA:

 Os motores trifásicos com potência acima de 5 cv, obrigatoriamente terão partida compensada, conforme Tabela 13.

6.6.2. Consumidores situados em periferias de núcleos urbanos ou zonas rurais

Estas unidades consumidoras, como sítios, chácaras, entre outras, assim como as unidades consumidoras rurais, são atendidas por rede secundária monofásica, sem a presença de transformador exclusivo.

a) Tipo M

Consumidores a serem atendidos a 2 fios (fase + neutro) 115 V, com carga instalada até 8,05 kW conforme Tabela 19 e 2 fios (fase + neutro) 230 V, com carga instalada até 23 kW conforme Tabela 20, e que <u>não</u> constem:

- Soma das potências dos motores monofásicos superior a 2 cv se alimentados em 120 V ou 220 V;
- Máquina de solda a transformador com potência nominal superior a 2 kW.

Consumidores atendidos a 3 fios (2 fases + neutro) 254/127 V com carga instalada até 25 kW, conforme Tabela 21, do qual <u>não</u> conste:

Atendimento a motor monofásico superior a 12 cv;

b) Tipo B

Consumidores atendidos a 3 fios (2 fases + neutro) 230/115 V com carga instalada até 23 kW, conforme Tabela 19, dos quais não constem:

- Aparelhos vetados aos consumidores do tipo M, caso alimentados em tensão de 115 V;
- Soma das potências dos motores monofásicos de 230 V superior a 7,5 cv;
- Máquina de solda a transformador alimentada em 230 V com potência superior a 8,0 kW.

NOTA:

I. Consultar com a distribuidora local a disponibilidade para o atendimento tipo
 B na região.

6.6.3. Consumidores situados em áreas rurais atendidos por transformador exclusivo

a) Tipo B

Consumidores atendidos a 3 fios (2 fases + neutro), nas tensões de 230/115 V, ou com 2 fios na tensão de 230 V, com carga instalada de até 15 kW, nas empresas ESE, e EMS (Tabela 19), e com carga instalada de até 23 kW nas empresas EMR (Tabela 20), dos quais <u>não</u> constem:

- Aparelhos vetados aos consumidores do tipo M ou B, caso alimentados em 115 ou 230 V.
- Soma das potências dos motores superior a 12,5 cv, nas empresas ESE;
- Soma das potências dos motores superior a 15 cv na empresa EMR.

b) Tipo T

Consumidores atendidos a 4 fios (3 fases + neutro), nas tensões de 220/127 V, Tabela 16 ou 380/220 V, Tabela 18, com demanda de 81,5 kVA, do qual não constem:

- Soma das potências dos motores monofásicos superior a 12,5 cv, se alimentados em 220 V ou 380 V.
- Soma das potências dos motores trifásicos superior a 30 cv.

NOTAS:

- Nos casos em que os consumidores não se enquadrarem nos tipos acima descritos, a Energisa deverá ser consultada previamente.
- II. Os métodos de partida dos motores deverão ser conforme Tabela 15.
- III. Para ligações de aparelho de raios-x, compressor e engenho de serra (horizontal ou vertical), a concessionária deverá ser consultada sobre a possibilidade de sua instalação.
- IV. Recomenda-se que seja instalado um dispositivo de proteção contra subtensão e/ou falta de fase, junto aos motores elétricos.

6.7. Ligações de cargas especiais

São consideradas cargas especiais aquelas que provocam distúrbios na qualidade da energia elétrica, seja em regime permanente ou transitório. Os casos de ligação de aparelhos com carga de flutuação brusca, como solda elétrica, motores com partidas frequentes, engenho de serra, raios-x, eletrogalvanização, entre outros semelhantes, ou quaisquer outros dispositivos causadores de distúrbios de tensão ou corrente, bem como outras instalações que apresentem condições diferentes das estabelecidas nesta norma, são tratados como especiais. Para essas ligações, pode ser exigida a instalação de equipamentos corretivos, um transformador particular e/ou a participação financeira para a realização das obras necessárias à correção dos distúrbios, a serem executadas pela concessionária.

Os consumidores enquadrados neste item devem consultar o site da Energisa ou escritórios da concessionária através de suas agências antes da execução de suas instalações, para que sejam fornecidos detalhes e dados técnicos referentes à carga a ser instalada e receber a devida orientação sobre o tipo de atendimento.

6.8. Consumidores irrigantes

Para unidades consumidoras a serem atendidas na modalidade irrigante, deverá ser montado um padrão de entrada de energia com a caixa de medição polifásica, independente se for atendido em rede monofásica, bifásica ou trifásica.

6.9. Aumento de carga

- a) Qualquer aumento de carga e/ou alteração de suas características na unidade consumidora, deve ser submetido à apreciação prévia da Energisa, para verificação da viabilidade e das condições técnicas de atendimento.
- b) O consumidor será responsabilizado por danos causados aos equipamentos de medição ou à rede de distribuição, na forma da legislação vigente, decorrentes de aumentos de carga e/ou alteração de suas características, realizados à revelia da Energisa.
- c) Em caso de inobservância pelo consumidor do disposto acima, a Energisa fica desobrigada de garantir a qualidade e a continuidade do fornecimento, podendo inclusive suspendê-lo, se vier a prejudicar o atendimento a outras unidades consumidoras.

6.10. Fator de potência

- a) O consumidor deve manter o fator de potência, indutivo ou capacitivo de sua instalação o mais próximo possível da unidade, no mínimo 0,92, instalando, se necessário, equipamentos para correção do fator de potência.
- b) O cliente deverá informar a Energisa sobre a instalação de capacitores e instalar placa de sinalização no padrão de entrada fora do alinhamento do visor do medidor. Instalação às expensas do consumidor.

- c) Sendo constatado nas suas instalações um fator de potência inferior ao valor de referência estabelecido na legislação em vigor, a Energisa efetuará o faturamento do consumo de energia e da demanda de potência reativa excedentes, calculados de acordo com a legislação.
- d) Dentre as possibilidades de correção do fator de potência de uma instalação, a utilização de capacitores é a mais adequada para clientes de baixa tensão. Para a correção do fator de potência, é recomendada a instalação de capacitores no circuito de baixa tensão, próximos às cargas com baixo fator de potência. Neste caso, cabe ao cliente determinar a forma de acionamento para esses capacitores, podendo ser por meio de disjuntores ou chaves automáticas controladas por variação de corrente, tensão, potência reativa, entre outros.
- e) A instalação do banco de capacitores deve ser feita conforme recomendações do fabricante e estar de acordo com a ABNT NBR IEC 60831-1.

6.11. Entrada de serviço

Os equipamentos de medição, bem como os condutores do ramal de conexão, serão fornecidos pela concessionária. Os demais materiais da entrada de serviço serão fornecidos pelo consumidor e estarão sujeitos a aprovação pela concessionária.

A execução da entrada de serviço, exceto o ramal de conexão, ficará a cargo do interessado.

O consumidor é obrigado a manter em bom estado de conservação os componentes da entrada de serviço a partir do ponto de entrega. Caso seja constatada qualquer deficiência técnica ou de segurança, o consumidor será notificado das irregularidades existentes. Caso não providencie os reparos necessários dentro de prazo prefixado pela concessionária, estará sujeito a suspensão do fornecimento conforme legislação em vigor. O consumidor é responsável pelos danos eventuais causados aos materiais e equipamentos de propriedade da concessionária.

6.12. Condições não permitidas

- a) Não será permitida a instalação de condutores conduzindo energia não medida na mesma caixa de passagem e/ou tubulação contendo condutores conduzindo energia já medida.
- b) Não será permitido paralelismo de geradores de propriedade do consumidor com o sistema da concessionária. Para evitar qualquer possibilidade desse paralelismo, nas instalações onde estiver gerador o cliente deverá apresentar projeto elétrico para aprovação da distribuidora, onde deverão apresentar uma das soluções abaixo:
 - Instalação de uma chave reversora de acionamento manual ou elétrico com intertravamento mecânico, separando os circuitos alimentadores dos sistemas da concessionária e do gerador particular, de modo a reverter o fornecimento, quando necessário;
 - Construção de um circuito de emergência, independente do circuito de instalação normal, alimentado por gerador;

NOTAS:

- Será vetada a interligação do circuito de emergência com o circuito (fase e neutro) alimentado pela rede da concessionária;
- II. Não será permitido o aterramento do gerador compartilhado com aterramento da concessionária.
- c) Não será permitido que os condutores do ramal de conexão ou do ramal de entrada cruzem sobre imóveis de terceiros.
- d) Não será permitido que ramal de entrada cruze sobre área construída;
- e) Não será permitido o aumento de carga, de disponibilidade ou instalação de geração distribuída sem a prévia autorização da concessionária.

- f) Em nenhuma hipótese será permitido mais de um ramal de conexão para um mesmo imóvel.
- g) Não será permitido o uso de cabos de cobre com encordoamento flexível sem o uso de terminais tubulares nos condutores do ramal de entrada e de saída do medidor até o centro de distribuição. As especificações do conector tubular podem ser encontradas na ETU-159.2 Conector terminal de cobre tipo Cabo-Barra à compressão para Rede até 36,2 kV.
- h) O consumidor deve permitir, em qualquer tempo, o livre acesso dos representantes da concessionária, devidamente credenciados, às instalações elétricas referentes à sua unidade consumidora e lhes fornecer os dados e informações solicitadas, referentes ao funcionamento dos aparelhos e instalações ligados à rede elétrica. O impedimento ao acesso de empregados e prepostos da concessionária pode acarretar suspensão do fornecimento.
- i) Não será permitido o uso do poste da concessionária para construção do padrão de entrada de energia, com exceção do padrão instalado pela concessionária ou para a ligação de serviços concedidos e de utilidade pública (iluminação pública, telecomunicações etc.), com autorização prévia e aprovação de projeto pela concessionária.
- j) Não será permitida a ligação de unidades consumidoras que estejam situadas parcialmente ou integralmente sob a rede de distribuição. O solicitante deve ser notificado para regularizar a situação, podendo ele solicitar o deslocamento ou afastamento da rede, às suas expensas, conforme previsto na Resolução ANEEL nº 1.000/2021. A ligação estará condicionada à garantia de que a referida unidade atenda ao código de postura urbana do município nos casos de identificação de avanço da propriedade.
- k) Não será permitido o uso de condutores com classe de isolação diferente de 0,6/1 kV.

 Não é permitido a construção e ligação do padrão de entrada pré-moldado ou em placas de concreto, sendo construído em alvenaria e instalado posteriormente todo acabado no local.

6.13. Recarga para veículos elétricos

De acordo com a REN nº 1.000/2021 da ANEEL, a instalação de estação de recarga de veículos elétricos deve ser comunicada previamente à distribuidora em caso de:

- I Conexão nova;
- II- Aumento ou redução de carga; ou
- III Alteração do nível de tensão.

Também é vedada a injeção de energia elétrica na rede de distribuição a partir dos veículos elétricos e a participação no Sistema de Compensação de Energia Elétrica de microgeração e minigeração distribuída, conforme Art. 555 da REN n°1.000/2021.

Para o atendimento de solicitações de recarga de veículo elétrico, devem ser atendidos todos os requisitos mínimos e diretrizes definidas na norma NDU-042 - Fornecimento de Energia para Estações de Recarga de Veículo Elétrico.

- a) As estações de recarga de veículos elétricos deverão ser dimensionadas e instaladas obedecendo aos requisitos da norma técnica ABNT NBR IEC 61851;
- b) Cada estação de recarga deverá ser alimentada por circuito exclusivo, com no mínimo proteção de sobrecorrente e disjuntor diferencial, conforme NDU-042;
- c) Outras proteções necessárias para a estação de Recarga deverão ser informadas pelo fabricante, ficando estas ações sob a responsabilidade do cliente;
- d) A potência da estação de recarga informada pelo fabricante deve ser somada ao cálculo total de carga e demanda da unidade consumidora;
- e) A concessionária poderá solicitar estudo de viabilidade da rede de distribuição, caso julgue necessário, como também solicitar proteções adicionais na conexão da estação de recarga.

6.14. Geração Própria

Para clientes que possuam geração distribuída em sua unidade consumidora, conectadas em baixa tensão, deverão ser seguidos os critérios técnicos descritos na norma técnica, NDU 013 - *Critérios para a Conexão em Baixa Tensão de Acessantes de Geração Distribuída ao Sistema de Distribuição*.

7. ATENDIMENTO AO CLIENTE

7.1. Solicitação

Para as solicitações relacionadas ao fornecimento de energia elétrica em tensão secundária para edificações individuais, cuja carga instalada seja inferior a 75kW, na área urbana e rural, o cliente deve atender as condições a seguir:

- Realizar a solicitação nos seguintes canais de atendimento: Aplicativo Energisa
 On, WhatsApp Gisa, Agência digital (site), Call Center e de forma presencial
 nas Agências de Atendimento;
- 2. Apresentar as seguintes documentações:
 - 2.1 Pessoa Física: CPF e RG ou, na ausência, apresentar outro documento oficial com foto. Para indígenas, basta o RANI, que é o Registro Administrativo de Nascimento Indígena;
 - 2.2 Pessoa Jurídica: Contrato Social, CNPJ, documento de identificação com foto e CPF do responsável pela empresa;
 - 2.3 Dados de Contrato solicitados pelo Grupo Energisa;
 - 2.4 Endereço das instalações ou meio de comunicação para entrega da fatura, das correspondências e das notificações;
- 3. Apresentar as documentações relativas as atividades desenvolvidas:
 - 3.1 Informação e do cumentação das atividades desenvolvidas nas instalações;

- 3.2 Declaração descritiva de carga instalada;
- 3.3 Informação das cargas que possam provocar perturbações no sistema de distribuição.

Notas:

- O atendimento às solicitações estará condicionado à análise da relação da carga declarada e ao estudo da rede para verificação de necessidade de obra;
- II. Documentos adicionais podem ser solicitadas a critério da distribuidora atendendo a REN 1.000/2021 da ANEEL;
- III. Para as relações de cargas cujo total seja superior a 75 kW, haverá a necessidade de apresentação de projeto elétrico que deverá seguir as orientações da NDU-002 Fornecimento de Energia Elétrica em Tensão Primária.

7.2. Ligação de canteiro de obras

No atendimento dos pedidos de ligação dos canteiros de obra, o solicitante deverá cumprir as recomendações das normas técnicas da Energisa, apresentando a relação de carga, incluir a proteção de corrente diferencial-residual (Disjuntor Diferencial-DR), assim como a Anotação de Responsabilidade Técnica (ART) ou Termo de Responsabilidade Técnica (TRT) do projeto e execução das instalações de canteiro de obra, no momento da solicitação.

As instalações elétricas internas devem seguir as recomendações de segurança da Norma Regulamentadora nº 18 - Segurança e Saúde no Trabalho na Indústria da Construção.

Para as relações de cargas cujo total seja superior a 75 kW, haverá a necessidade de apresentação de projeto elétrico que deverá seguir as orientações da NDU-002 - Fornecimento de Energia Elétrica em Tensão Primária.

7.3. Fornecimento provisório

O padrão para ligações provisórias deve seguir os mesmos padrões utilizados nas ligações definitivas (ligação nova).

As despesas com a instalação e retirada de rede e ramais de caráter temporário, destinados ao fornecimento provisório, bem como as relativas aos respectivos serviços de ligação e desligamento, correrão por conta do consumidor, podendo a distribuidora exigir, a título de garantia, o pagamento antecipado do consumo de energia elétrica ou da demanda de potência prevista, por até 03 (três) ciclos completos de faturamento. (REN n°1.000/2021 Art. 504).

7.4. Vistoria

Em conformidade com o Art. 91 da REN n°1.000/2021, a vistoria e instalação dos equipamentos de medição da unidade consumidora deve ser efetuada em até 5 (cinco) dias úteis para conexão em tensão menor que 2,3 kV;

Conforme o Art. 94 da REN n°1.000/2021, ocorrendo reprovação das instalações de entrada de energia elétrica, a distribuidora deve disponibilizar ao consumidor e demais usuários, em até 3 (três) dias úteis após a conclusão do procedimento, o relatório de vistoria, com os motivos e as providências corretivas necessárias.

Após resolvidas as pendências detectadas no relatório de vistoria, o consumidor e demais usuários devem formalizar nova solicitação de vistoria à distribuidora.

8. CRITÉRIOS PARA EXECUÇÃO DO PADRÃO DE ENTRADA

8.1. Disposições das Entradas de Serviço

Em função das condições apresentadas pelas edificações, serão admitidas diversas possibilidades de atendimento, conforme DESENHOS 04 a 06.

Somente será permitida a instalação do Padrão de Entrada em alvenaria (muro ou mureta) quando as casas forem recuadas em relação à via pública, caso contrário, a instalação deverá ser feita em parede, conforme DESENHOS 19 a 25.

Caso o cliente tenha dúvidas com relação a montagem do padrão de entrada, este deverá entrar em contato com a Energisa antes de fazer o pedido da vistoria.

Os consumidores deverão tomar as primeiras providências, relativas a:

- a) Verificação da posição da rede de distribuição em relação ao imóvel;
- b) Definição do tipo de fornecimento;
- c) Levantamento da Carga instalada na unidade consumidora a ser ligada;
- d) Localização e escolha do tipo de padrão.

8.2. Postes e Pontaletes

8.2.1. Poste auxiliar ou particular

O poste auxiliar deverá ter sua fabricação de concreto (ABNT NBR 8451-5) ou de aço galvanizado a quente (ABNT NBR 6591) de seção circular ou quadrada.

Os postes auxiliares exigidos nos padrões de entrada do grupo Energisa devem ser de 5 m para clientes situados na mesma calçada que a rede de baixa tensão e de 7m para clientes situados na calçada oposta à rede de baixa tensão. Em casos extremos, quando o ramal de conexão não tenha como ser desviado de entrada de prédio (garagem) e demais locais de uso restrito a veículos (4,5 m), o poste auxiliar deverá ser de 7 m de comprimento mesmo para clientes que estejam no mesmo lado da calçada da rede de baixa tensão. Os postes auxiliares deverão ser de fornecedores homologados pela Energisa ou com laudo de ensaio do fabricante, conforme DESENHOS 28 a 32.

Todo poste deverá ter gravado, a 3.500 mm da base, suas características, de forma legível e indelével, em baixo ou alto relevo.

Todo poste deverá ser engastado no solo, com as dimensões e características de engastamento observadas conforme DESENHOS 29 e 30, e posteriormente ser revestido à alvenaria.

O fornecedor deverá consultar as seguintes especificações técnicas para verificar os detalhes construtivos dos postes auxiliares para entrada de serviço até 1,0 kV:

ETU 180.1 - Postes auxiliares de Concreto Armado em seção duplo T;

ETU 180.2 - Postes auxiliares de Aço-Carbono tubular;

ETU 180.3 - Postes auxiliar em Poliéster Reforçados com Fibra de Vidro (PRFV).

O poste auxiliar deverá ter sua base concretada para evitar que fique fora de prumo e ser dimensionado conforme Tabelas 16 a 23.

8.2.2. Pontalete

Os pontaletes devem atender aos seguintes critérios:

- a) Ter comprimento total máximo de 1,5 m com engastamento mínimo de 0,5 m em coluna ou viga da edificação (ver DESENHO 28);
- b) Ser de tubo de aço galvanizado a quente (ABNT NBR 6591), conforme DESENHO 28;
- c) Obedecer aos padrões construtivos constantes nesta norma, conforme DESENHO
 28;
- d) Ser utilizados apenas em edificações onde a fachada não apresente recuo e não possua altura suficiente para atender aos critérios mínimos construtivos do ramal e de segurança;
- e) Ser fixados em laje somente se não for ter mais nenhuma construção a partir dela;
- f) Não apresentar emendas.
- g) Não é permitido pontalete em muro.

8.3. Ramal de Conexão Aéreo

8.3.1. Critérios construtivos

As conexões e a ancoragens do ramal de conexão na rede secundária de distribuição e no ponto de entrega são executadas pela Energisa.

Deverá ser aéreo, entrar pela frente do terreno, ficar livre de qualquer obstáculo, ser perfeitamente visível e não deverá cruzar terrenos de terceiros. Quando houver acesso por duas ruas, considerar-se-á a frente do terreno, o lado onde está situada a entrada principal do prédio. Se o terreno for de esquina, permitir-se-á entrar com o ramal por qualquer um dos lados, dando-se preferência àquele onde estiver situada a entrada da unidade consumidora.

O vão livre deverá possuir no máximo 40 metros de comprimento tanto em áreas urbanas quanto em rurais. Para casos em que o ramal for maior que 40 metros, deverá ser solicitado extensão de rede elétrica.

Deverá ser observado o afastamento mínimo de 700 mm com fios e/ou cabos de telefonia, sinalização etc., conforme os critérios para compartilhamento de infraestrutura da rede elétrica de distribuição adotada pela concessionária.

Não deverá ser acessível de janelas, sacadas, escadas, terraços etc. A distância mínima dos condutores a qualquer desses pontos deverá ser 1.200 mm.

Os condutores deverão ser instalados de forma a permitir as seguintes distâncias mínimas, medidas na vertical, entre o condutor e o solo (maior flecha do condutor), conforme DESENHO 01, DESENHO 02, DESENHO 07 e DESENHO 08, e exigências dos poderes públicos:

Travessias de rodovias: 7.000 mm;

Travessias de ferrovias: 6.000 mm;

• Ruas e avenidas: 5.500 mm;

• Entrada de prédios e demais locais de uso restrito a veículos: 4.500 mm;

- Ruas e vias exclusivas a pedestres em áreas urbanas: 3.500 mm;
- Vias exclusivas de pedestres em áreas rurais: 4.500 mm;
- Estradas rurais e áreas de plantio com tráfego de máquinas agrícolas: 6.500 mm;
- Locais acessíveis ao trânsito de veículos em áreas rurais: 4.500 mm;

- I. Em ferrovias eletrificadas ou eletrificáveis, a distância mínima do condutor ao boleto dos trilhos é de 12 m para tensões até 36,2 kV, conforme NBR 14165;
- II. Em rodovias estaduais, recomenda-se que a distância mínima do condutor ao solo atenda à legislação específica do órgão estadual.

8.3.2. Condutores

Determina-se com relação aos condutores:

- a) Os condutores do ramal de conexão deverão ser isolados:
 - Multiplexado autossustentado, com isolação extrudada em polietileno reticulado (XLPE) de 0,6/1,0 kV, conforme ABNT NBR 8182;
 - Concêntricos, com isolação extrudada em polietileno reticulado (XLPE) de 0,6/1,0 kV, conforme ABNT NBR 15716.
- b) A seção dos condutores será determinada pelas Tabelas 16 a 23 conforme configuração definida.
- c) Os condutores do ramal de conexão serão conectados à rede de distribuição e ao ramal de entrada pela Energisa, através de conectores adequados, exclusivamente fornecidos pela Energisa;

- d) Depois de efetuada a conexão do ramal de conexão com o ramal de entrada, o conector e a parte não isolados dos condutores deverão ser envolvidos por cobertura isolante;
- e) Nas conexões bimetálicas de cobre com alumínio, o condutor de cobre deverá ficar sempre pelo lado de baixo para evitar a corrosão do alumínio.
- f) Para efeito de padronização da identificação das fases para alimentação da unidade consumidora, deverão ser adotadas as seguintes cores:
 - Fase A: Preto;
 - Fase B: Cinza ou branco;
 - Fase C: Vermelho;
 - Neutro: Azul claro ou nu, no caso de cabos multiplexados não isolados;
 - Terra: Verde.

8.3.3. Fixação

O ramal de conexão aéreo tem sua fixação no poste da concessionária através da armação secundária com o isolador roldana. Já na parte do cliente, a fixação poderá ser feita através de:

- a) Olhal ou armação secundária com isolador roldana no poste auxiliar;
- b) Olhal ou armação secundária com isolador roldana em alvenaria, para os casos em que a edificação estiver no limite de propriedade com a via pública e desde que suporte o esforço mecânico provocado pelo ramal de conexão;
- c) Olhal para o pontalete, para os casos em que não exista recuo da edificação em relação a via pública, e altura de segurança, dimensionados conforme as Tabelas 16 a 23.

- O poste auxiliar deverá ser localizado no limite da propriedade com a via pública;
- II. Para os casos de instalação do olhal ou armação secundária em alvenaria, o usuário deve atender todos os requisitos de segurança estabelecidos na NR 35;
- III. A altura de segurança dos condutores em relação ao solo deve ser seguir o estabelecido na Tabela 27, apresentada nesta norma, e em conformidade com a NBR 15992;
- IV. O ponto de fixação deve ser livre e desimpedido de quaisquer obstáculos que impeçam o livre acesso;
- V. Não será permitido a utilização de pontalete fixado no muro;
- VI. A amarração dos condutores deverá ser executada conforme DESENHO 26;
- VII. Em áreas com ocorrência de névoa salina (maresia), recomenda-se a utilização de porca olhal especificada de acordo com a NDU-027 *Critérios para Utilização de Equipamentos e Materiais em Área de Corrosão Atmosférica* e ETU-188.3 *Conector terminal pré-isolado tipo olhal até 1,0 kV*;
- VIII. O poste auxiliar, pontalete, alvenaria ou platibanda, sendo utilizada armação secundária ou porca olhal, deve ser capaz de suportar um esforço no ponto de ancoragem conforme esforços mecânicos estabelecidos nas Tabelas 16 a 23, no ponto de ancoragem;
 - IX. No ato da vistoria e instalação da medição será realizado a validação da resistência mecânica mínima exigida no ponto de fixação, através de teste com o uso de um dinamômetro.

8.4. Ponto de Conexão

O ponto de conexão de energia elétrica deverá situar-se no limite da via pública com o imóvel, onde estejam localizadas as instalações, conforme Art. 25 da REN n° 1.000/2021 da ANEEL. Exceto se tratar de:

- a) Situação em que exista imóvel de terceiros, em área urbana, entre a via pública e o imóvel em que esteja localizada a unidade consumidora, caso em que o ponto de conexão se situará no limite da via pública com o primeiro imóvel;
- b) Condomínio horizontal onde a rede elétrica interna não seja da distribuidora, caso em que o ponto de conexão se situará no limite da via pública com o condomínio horizontal;
- c) Condomínio horizontal onde a rede elétrica interna seja da distribuidora, caso em que o ponto de conexão se situará no limite da via interna com o imóvel em que esteja localizada a unidade consumidora;
- d) Em áreas servidas por rede aérea, havendo interesse do consumidor em ser atendido por ramal subterrâneo, o ponto de entrega situar-se-á na conexão deste ramal com a rede aérea.

8.5. Ramal de Entrada

O ramal de entrada deverá seguir os critérios e desenhos desta norma.

8.5.1. Ramal de entrada aéreo

Os condutores deverão ser de cobre, isolamento do tipo PVC, HEPR, EPR ou XLPE, todos para classe de tensão em 0,6/1,0 kV, temperatura máxima para serviço contínuo de 70°C e 90°C, próprios para instalação em eletrodutos, de bitola mínima determinada pelas Tabelas 16 a 23, conforme a carga instalada e a demanda, não devendo ser inferior a 6 mm², inclusive o neutro, que deverá ser perfeitamente identificado.

Deve haver continuidade do neutro, sendo nele vedado o uso de chave, disjuntor, fusível ou qualquer outro tipo de seccionamento.

Não são permitidas emendas nos condutores do ramal de entrada.

Os condutores devem ter comprimento suficiente para permitir a conexão ao ramal de conexão, nas condições dos padrões construtivos, bem como aos equipamentos de medição e proteção, conforme DESENHOS 17 a 22.

Os condutores do ramal de entrada devem possuir identificação no ponto de derivação e no ponto de conexão à medição e a proteção, seguindo o padrão:

- Fase A Preta;
- Fase B Branca ou cinza;
- Fase C Vermelha;
- Neutro Azul-claro;
- Terra Verde.

Pode-se também utilizar anilhas ou fitas isolantes de PVC coloridas para a identificação de condutores.

8.5.1.1. Eletrodutos

Para atendimento do ramal aéreo, o eletroduto deve ser de PVC rígido antichamas (ABNT NBR 15465) ou de aço galvanizado à imersão a quente tipo pesado (ABNT NBR 5624) em diâmetro nominal, conforme Tabelas 16 a 23. Deve-se instalar o eletroduto com o menor número de curvas até a caixa de medição, de modo a garantir a livre passagem do ramal de entrada.

Deve ser embutido ou firmemente fixado por meio de fitas ou cintas de aço inoxidável, fitas ou cintas de aço carbono zincadas a quente, liga de alumínio ou ainda através de amarrações, atentando-se para que a inscrição do eletroduto não

seja escondida, para devida identificação, conforme os respectivos padrões construtivos e DESENHOS 09 a 11 e DESENHOS 17 a 22.

As curvas e emendas devem obedecer às prescrições contidas na ABNT NBR 5410 e, quando necessário, podem ser utilizadas emendas rosqueáveis.

Não são permitidas emendas nos eletrodutos em trechos de passagem entre o forro e o telhado.

O eletroduto deve ser firmemente atarraxado à caixa para equipamento de medição e/ou proteção, por meio de bucha e contra bucha ou arruela.

A vedação deve ser obtida utilizando massa de calafetar, sendo proibido o uso de "massa de vidraceiro".

A extremidade dos eletrodutos deve ser curvada para baixo, através de curva ou cabeçote para eletroduto, conforme DESENHO 27 e DESENHO 31.

Todo eletroduto que contenha condutores não medidos (antes da medição) pode ser embutido, desde que seja utilizado eletroduto de aço galvanizado a quente (tipo pesado - ABNT NBR 5624).

Em relação à observação do Padrão de Entrada em vista frontal, a instalação do eletroduto que comporta os condutores não medidos (antes da medição) deve ser ao lado esquerdo da caixa de medição. Já a dos condutores medidos (após a medição) deve ser ao lado direito da caixa de medição (DESENHOS 34, 36, 38, 39 e 41).

NOTAS:

 Não é permitido o uso de eletrodutos de PVC rígido antichamas (ABNT NBR 15465) embutidos.

8.5.2. Ramal de entrada subterrâneo

Conforme o Art. 27 da REN n°1.000/2021 da ANEEL, caso o consumidor faça a opção por ser atendido por ramal de entrada subterrâneo a partir de poste da distribuidora, devem ser observadas as seguintes disposições:

- O atendimento é condicionado à análise de viabilidade técnica pela distribuidora;
- II. O ponto de conexão se situará na conexão do ramal de entrada subterrâneo com a rede da distribuidora;
- III. O ramal de entrada subterrâneo não pode atravessar imóvel de terceiros ou vias públicas, exceto calçadas;
- IV. Fica a cargo do consumidor assumir os custos adicionais da conexão, os custos com instalação, materiais, manutenção e os custos de eventuais modificações futuras; e
- V. O consumidor deve obter autorização prévia do poder público para execução da obra de sua responsabilidade.

I. O consumidor deverá entregar a declaração de compromisso/ramal subterrâneo (Anexo I) à concessionária, com firma reconhecida em cartório ou com assinatura digital no padrão da Infraestrutura de Chaves Públicas (ICP);

8.5.2.1. Critérios Construtivos

Além das disposições regulatórias, o consumidor que opte pelo atendimento em ramal de entrada subterrâneo deverá atender aos seguintes critérios construtivos:

- a) O ramal de entrada subterrâneo deve ser construído conforme posturas municipais;
- b) A entrada subterrânea deve derivar diretamente da rede de distribuição da concessionária;
- c) A entrada do ramal subterrâneo deve ser construída, sempre que possível, na frente da área da unidade consumidora (lote, terreno);
- d) Não são permitidas emendas nos condutores do ramal subterrâneo;

- e) Em caso de curvas dos cabos, o raio mínimo adequado deve ser 12 (doze) vezes o diâmetro externo dos cabos, salvo indicação contrária do fabricante, e realizadas através de caixas de passagens ao longo do ramal;
- f) A instalação dos cabos deve ser feita pelo consumidor após a instalação completa dos eletrodutos;
- g) Não será permitida a instalação de condutores conduzindo energia não medida na mesma caixa de passagem e/ou tubulação contendo condutores conduzindo energia já medida;
- h) Junto ao poste da concessionária deve ser deixada uma sobra de 2,0 m de cabos na caixa de passagem;
- i) Nas situações em que houver mais de uma caixa de passagem, deverá ser deixada uma sobra de 1,0m a 2,0m de cabo em cada caixa;
- j) Nos casos em que o ramal de entrada subterrâneo atravessar vias particulares em condomínios, deverá ser entregue ao grupo Energisa documento com autorização do condomínio;
- k) Na descida do poste, o ramal deve ser sempre protegido por eletro duto de aço galvanizado, a fogo do tipo pesado (ABNT NBR 5624), com comprimento de 6,0 metros e com conexões conforme a ABNT NBR 5597 ou ABNT NBR 5598. O diâmetro nominal está descrito nas Tabelas 16 a 23, e conforme DESENHOS 10 e 11;
- Deverão ser adotadas caixas de passagem de dimensões internas mínimas conforme DESENHOS 12 a 15;
- m) É obrigatória a construção de caixa de passagem próxima ao poste, a qual deve possuir dispositivo de lacre, conforme DESENHOS 9 a 11, e pode ficar em qualquer posição em relação ao poste, desde que no passeio (calçada), a um raio de 0,5 metro do poste;

- n) Só será permitida a instalação de ramais subterrâneos em poste da concessionária nas seguintes quantidades:
 - Poste com equipamentos (transformador, religador etc.): 2 ramais por poste;
 - Poste sem equipamentos: 4 ramais por poste;
- o) As edificações atendidas devem ser identificadas através de uma placa metálica ou de acrílico de 0,20 m x 0,10 m contendo os números das edificações pintados com tinta de revestimento anticorrosivo, conforme DESENHO 09;

- A identificação através da placa (item p) deverá ser realizada mesmo que no poste só haja um consumidor atendido através de ramal de ligação subterrâneo;
- II. É de responsabilidade do consumidor a confecção e colocação da placa de identificação, devendo esta ser instalada imediatamente abaixo do pingadouro, a aproximadamente 5,0 m do solo;
- III. Para empreendimentos com múltiplas unidades consumidoras, caso a distância do poste da concessionária até o padrão de energia for maior que 20,0 m, será obrigatória a construção de uma segunda caixa de passagem com dispositivo de lacre, conforme DESENHOS 12 a 15.
- IV. Caso o grupo Energisa verifique necessidade, pode ser exigida mais de uma caixa de passagem, mesmo abaixo da distância de 20 metros estabelecida.

8.5.2.2. Condutores

Os cabos dos circuitos secundários devem ser instalados em eletrodutos em aço galvanizado, devendo observar os seguintes casos:

a) Envelopados em concreto: nas travessias de vias particulares e em locais onde haja circulação de veículos.

- b) Diretamente enterrados: praças, calçadas e onde não haja circulação de veículos;
- c) Os bancos de dutos devem ser construídos conforme DESENHO 11.
- d) Os circuitos secundários devem ser constituídos de cabos unipolares, em cobre, com isolação em etileno propileno (EPR, HEPR ou EPR 105) ou polietileno termofixo (XLPE), classe de tensão 0,6/1,0 kV, com características conforme ETU-136.1 Cabo de potência para tensões até 0,6/1,0 kV.
- e) Os condutores devem ser contínuos, sem emendas e ter comprimento suficiente, de modo a permitir sua conexão aos equipamentos de medição e proteção e fazer uma pingadeira antes da conexão com os condutores do ramal de conexão, conforme DESENHO 10.

8.5.3. Caixa de passagem subterrânea

O fornecimento, instalação e manutenção da caixa são de responsabilidade do consumidor.

São instaladas no passeio, com afastamento de 50 cm (máximo de 1,0 m) do poste de derivação da Energisa, e em todos os pontos de mudança de direção dos condutores a cada 20 metros.

As caixas devem ser construídas em concreto armado ou alvenaria, apresentar sistema de drenagem, subtampa metálica com dispositivos para lacres, tampa de ferro fundido ou concreto armado com duas alças retráteis, conforme padrão da Energisa ou sob consulta, verificando viabilidade técnica e comercial.

Junto ao poste da Energisa e em local com passagem de pedestres e/ou veículos, somente é aceita a caixa com tampa de concreto. Em região litorânea, podem ser aceitas tampas da caixa de passagem com materiais tecnologicamente inovadores, desde que comprovada sua resistência e previamente aprovada pela Energisa.

Devem apresentar dimensões internas padronizadas e construídas com dimensionamento da caixa conforme tipo de ligação e bitola, adotando os padrões da Energisa, conforme DESENHOS 12 a 15.

As referidas caixas são exclusivas para os condutores de energia elétrica e aterramento, não podendo ser utilizadas para os condutores de telefonia, TV à cabo etc.

8.6. Caixas para equipamento de medição e/ou proteção

8.6.1. Caixas

As caixas utilizadas no padrão de entrada devem ser de fornecedores homologados pelo Grupo Energisa, conforme DESENHOS 33 a 41.

Os fornecedores que pretenderem realizar o cadastramento e a homologação de caixas de medição produzidas em policarbonato, deverão seguir as diretrizes da ETU 187.1 - Especificação das caixas para medição de energia elétrica em policarbonato.

A lista de fornecedores homologados de caixas metálicas e de policarbonato poderá ser consultada no site de Normas da Energisa, através do documento PT 003/2017 - Lista de Fornecedores Homologados.

8.6.2. Material das caixas

As caixas de medição, monofásicas e polifásicas, deverão ser confeccionadas com um dos seguintes materiais:

- Caixa de policarbonato: conforme DESENHOS 33 a 39;
- Caixa para medição direta com medidor de 200A: chapa de aço, pintada eletrostaticamente, conforme DESENHO 40 e DESENHO 41.

As caixas devem atender aos critérios da ABNT NBR 15820.

8.6.3. Identificação

As caixas deverão ser marcadas de maneira clara e indelével na parte frontal da tampa, com as seguintes informações:

- a) Nome e/ou marca comercial do fabricante;
- b) Ano de fabricação;
- c) Número do lote de fabricação;
- d) Logomarca da concessionária.

8.6.4. Aprovação de modelo e controle de qualidade

A aprovação e controle de qualidade dos modelos a serem usados ficarão sob a responsabilidade da concessionária, que emitirá o certificado de registro cadastral do fabricante.

A relação das caixas homologadas e seus fabricantes pode ser encontrada no site da concessionária.

8.7. Proteção da entrada de serviço

8.7.1. Proteção a sobrecarga e de curto-circuito

Toda instalação consumidora deve ser equipada com disjuntor termomagnético, com capacidade de interrupção mínima de 5 kA, conforme ABNT NBR NM 60898 e com corrente nominal de acordo com as Tabelas 16 a 23, a fim de limitar e interromper o fornecimento de energia e assegurar proteção ao circuito alimentador da unidade de consumo.

O condutor neutro deve ser contínuo, não podendo ser instalado nenhum dispositivo capaz de causar sua interrupção.

A proteção do ramal de saída de cada unidade de consumo deverá ser instalada após os equipamentos de medição conforme DESENHO 39. Dessa forma, o medidor não será desligado após sua atuação.

Além da proteção geral instalada junto ao padrão de entrada, recomenda-se que o consumidor instale disjuntores termomagnéticos para circuitos parciais.

8.7.2. Proteção a sobretensão transitória ou de surtos (DPS)

É necessário que, nas novas solicitações de fornecimento de energia elétrica ou para melhorias e reformas do padrão de entrada já existente, o cliente realize a instalação do Dispositivo de Proteção contra Sobretensão (DPS) no padrão de entrada, de acordo com as prescrições da ABNT NBR 5410.

Essa conduta visa a proteção do cliente contra sobretensões provocadas por descargas atmosféricas diretas e indiretas, sobretensões de origem atmosférica transmitidas pela linha externa de alimentação e sobretensões de manobra.

Esses distúrbios podem colocar em risco a segurança de pessoas e animais residentes na edificação, como também causar danos em equipamentos elétricos e eletrônicos.

Entre outras obrigatoriedades de instalação e especificação do DPS, a ABNT NBR 5410 estabelece o seguinte:

- Quando o objetivo for a proteção contra sobretensões de origem atmosférica transmitidas pela linha externa de alimentação, bem como a proteção contra sobretensões de manobra, os DPS devem ser instalados junto ao ponto de entrada da linha na edificação ou no quadro de distribuição principal QDP, localizado o mais próximo possível do ponto de entrada;
- Quando o objetivo for a proteção contra sobretensões provocadas por descargas atmosféricas diretas sobre a edificação ou em suas proximidades, os DPS devem ser instalados no ponto de entrada da linha na edificação;

 Podem ser necessários DPS adicionais para a proteção de equipamentos sensíveis. Estes DPS devem ser coordenados com os DPS de montante e de jusante.

O DPS deve ser instalado na mesma estrutura em que está alojada a caixa de entrada de energia elétrica, conforme definido na ABNT NBR 5410.

O DPS deve ser dimensionado conforme a Tabela 2 abaixo, com fixação em trilhos DIN 35:

TABELA 2 - Aplicação/Utilização - DPS

Proteção Contra	Aplicação/Utilização	
Descargas Atmosféricas (PDA)	Urbano	Rural
Sem	Classe II	Classe I
Com	Classe I	Classe I

Os condutores para conexão do DPS estão na Tabela 3. O comprimento dos condutores destinados a conectar o DPS à barra/conector PEN deve ser o mais curto possível, respeitando o prescrito pela ABNT NBR 5410 em 500 mm.

TABELA 3 - Condutores de Ligação - DPS

Classe do DPS	Condutor de ligação	Tensão máxima de operação
Classe I	16 mm ²	275 V
Classe II	6 mm ²	2/5 V

O equipamento deve obrigatoriamente possuir proteção interna, visando garantir a continuidade do fornecimento de energia elétrica contra os efeitos do curto -circuito permanente do varistor (fim de sua vida útil), conforme ABNT NBR IEC 61643.

O supressor de surto deve possuir um dispositivo interruptor automático e não explosivo. O DPS deve possuir também um indicador de estado de funcionamento em operação normal ou inoperante. Se inoperante, significa que, apesar de não haver interrupção no fornecimento de energia ao cliente, o DPS não protegerá na

ocorrência de um novo surto atmosférico e deverá ser substituído. Neste caso, em que há a necessidade de substituição do DPS, o dispositivo deve ser providenciado pelo próprio cliente, ficando a instalação ao encargo da distribuidora.

A aplicação do DPS, além de proporcionar maior segurança, preserva o funcionamento adequado das instalações e conservação dos bens.

8.7.3. Proteção a corrente diferencial-residual (DR)

A Energisa, em atendimento à ABNT NBR 5410, recomenda a instalação de dispositivo diferencial-residual de alta sensibilidade (DR) nos quadros de distribuição da unidade consumidora para a proteção contra choques elétricos.

8.8. Proteção de motores

Os dispositivos de partida apresentados na Tabela 15 são escolhidos pelos próprios consumidores em função das características dos conjugados de partida solicitados pelas cargas.

Independentemente do tipo de partida, o consumidor deve instalar dispositivos de proteção contra falta de fase na ligação de seus motores. O dispositivo de partida do motor deve ser dotado de sensor que o desligue na eventual falta de tensão, em qualquer uma das fases.

8.9. Medição

8.9.1. Localização

A concessionária reserva-se ao direito de indicar, em qualquer caso, o local mais adequado para instalação da medição, observando, entretanto, os seguintes pontos:

 a) Deve ficar na propriedade do consumidor, situada no limite do terreno com a via pública (calçada), com o visor voltado para ela, conforme DESENHOS 05 a 08;

- b) Onde as casas são recuadas em relação à via pública, a medição deve ser feita fixada no muro, mureta ou em poste auxiliar na divisa do lote com a via pública, conforme DESENHOS 05 a 08;
- c) As caixas de medição devem ser expostas em 25 mm entre a superfície do visor da tampa e o reboco acabado e/ou do limite do terreno com a via pública.
- d) É vedado o compartilhamento de postes auxiliares. Cada unidade consumidora é composta de suas próprias instalações.

8.9.2. Instalação

Os equipamentos de medição serão instalados e ligados pela concessionária após aprovação e vistoria do padrão de entrada de energia.

A caixa de medição deve ficar a uma altura de 1,7 m do piso acabado até a parte superior da caixa (topo), podendo variar de 20 mm para mais ou menos.

A medição deve ser de livre e fácil acesso à Energisa, sem nenhuma obstrução ou impedimento, localizada conforme item 8.9.1.

Mesmo sendo especificado o fornecimento a 2 (dois) fios, permite-se a instalação de caixa para medidor polifásico, caso o consumidor tenha previsão de aumento de carga.

8.10. Aterramento

Todas as considerações estabelecidas na ABNT NBR 5410 devem ser respeitadas.

Todos os aparelhos que necessitem de aterramento devem ser conectados ao condutor de aterramento.

O neutro da entrada de serviço deverá ser aterrado num ponto único, e junto com a caixa quando esta for metálica.

As partes condutoras, normalmente sem tensão, devem ser permanentemente ligadas à terra.

O condutor neutro da instalação deve ser ligado ao eletrodo de terra por meio de condutor de aço cobreado, sem emendas, o mais curto e retilíneo possível, sem chave ou qualquer dispositivo que possa causar a sua interrupção, e ser devidamente protegido por eletroduto rígido nos trechos em que possa sofrer danificações mecânicas.

O ponto de conexão do condutor de aterramento a haste deve ser acessível à inspeção, ser revestido com massa de calafetar, e ser protegido mecanicamente por meio de uma caixa de cimento, alvenaria ou PVC, com tampa, conforme DESENHO 42. Em locais com trânsito de pessoas e veículos deverá ser usada tampa de concreto, não sendo permitida tampa de PVC.

A caixa de inspeção do aterramento, nos casos de residência em que não exista recuo, deverá ser localizada no passeio. Para residências em que exista recuo, poderá ser instalada internamente ou no passeio.

Os condutores de aterramento deverão ser alojados em eletrodutos exclusivos, desde a conexão com as hastes até a caixa de medição, e devem ter bitola mínima conforme Tabelas 16 a 23.

O valor da resistência da terra, em qualquer época do ano, não deve ultrapassar a 20 ohms. Em caso de ultrapassagem, com o número mínimo de hastes empregada de acordo com as Tabelas 16 a 23, devem ser usadas tantas quantas necessárias para que o valor seja atingido, distanciadas entre si de 2.400 mm e interligados pelo condutor de aterramento.

Devem ser obedecidos os padrões construtivos conforme DESENHO 43.

Deve-se utilizar conector cunha, de compressão tipo "H" ou parafuso-fendido na conexão do neutro.

A haste de aterramento deverá ser em aço cobreado, conforme ABNT NBR 13571, com diâmetro de 17,30 mm (3/4") e comprimento de 2.400 mm.

A conexão do condutor terra a haste pode ser realizada através de conector cunha cabo/haste, grampo terra duplo cobreado - tipo GTDU ou o grampo de aterramento tipo TH/THR.

Recomenda-se que o condutor de aterramento da instalação do consumidor seja conectado à terra do quadro de medição.

8.11. BOMBA DE INCÊNDIO

A ligação de bombas de incêndio deve ser feita conforme ABNT NBR 13714.

A alimentação elétrica das bombas de incêndio deve ser independente do consumo geral, de forma a permitir o desligamento geral de energia elétrica, sem prejuízo do funcionamento do motor da bomba de incêndio. O circuito de alimentação deverá ser derivado da entrada consumidora antes da chave geral e após a medição.

As chaves elétricas de alimentação das bombas de incêndio devem ser sinalizadas com a inscrição "ALIMENTAÇÃO DA BOMBA DE INCÊNDIO - NÃO DESLIGUE".

ENTRADA

BARRAMENTO

CHAVE PARA

BOMBA DE
INCÊNDIO

Figura 1: Esquema de ligação elétrica para acionamento da bomba de incêndio

Fonte: Adaptado de ABNT NBR 13714

9. DETERMINAÇÃO DA DEMANDA

9.1. Cálculo de Demanda da Unidade Consumidora

Deve-se calcular o valor de demanda da instalação a partir da seguinte expressão matemática:

$$D_{(kVA)} = \frac{d(kW)}{0.92}$$

Onde:

D é a demanda total da instalação, em kVA;

d(kW) é a carga demandada total, em kW, sendo calculada por:

$$d(kW) = d_1 + d_2 + d_3 + d_4 + d_5 + d_6 + d_7$$

Em que:

 d_1 = demanda de iluminação e tomadas, em kW, calculada conforme os fatores de demanda da Tabela 5;

 d_2 = demanda dos aparelhos para aquecimento de água (chuveiros elétricos, aquecedores, torneiras elétricas etc.), em kW, calculada conforme Tabela 6;

 d_3 = demanda de secadores de roupa, forno de micro-ondas, máquinas de lavar louça e hidromassagem, em kW, calculada conforme Tabela 7;

 d_4 = demanda de fogões e fornos elétricos, em kW, calculada conforme Tabela 8;

 d_5 = demanda dos aparelhos de ar-condicionado tipo janela ou centrais individuais, em kW, calculada conforme Tabelas 10 e 11;

 d_6 = demanda dos motores elétricos e máquinas de solda tipo motor gerador, em kW, conforme Tabelas 12 e 13;

 d_7 = demanda de máquinas de solda a transformador e aparelhos de Raios -X, em kW, calculada conforme Tabela 14.

- Demanda das unidades centrais de ar-condicionado, calculadas a partir das respectivas correntes máximas totais, valores a serem fornecidos pelos fabricantes e considerando-se o fator de demanda igual a 100%;
- II. Não serão permitidos, para motores com potência maior que 30,0 cv, os métodos de partida dos motores trifásicos conforme Tabela 15;
- III. A potência média para aparelhos e equipamentos não especificados na Tabela4 terá que constar no memorial de cálculo;
- IV. Para conversão de unidades de medida, consultar Tabela 24;
- V. A demanda calculada da unidade consumidora servirá de base para determinação, inclusive, da bitola dos condutores, dos eletrodutos, da proteção e medição, conforme Tabelas 16 a 23;
- VI. Não deve ser computada a potência dos aparelhos de reserva para efeito do cálculo de demanda;
- VII. Quando as máquinas de solda a transformador forem com ligação V-V invertida, a potência, em kVA, deve ser considerada em dobo o para o cálculo da demanda provável;
- VIII. A demanda da carga industrial deverá ser calculada e apresentada na forma de memorial de cálculo, conforme características e regime de funcionamento dela.

10. TABELAS

- Tabela 1 Tensão Secundária de cada empresa (no texto)
- Tabela 2 Aplicação / Utilização DPS (no texto)
- Tabela 3 Condutores de Ligação DPS (no texto)
- Tabela 4 Potência média de aparelhos e equipamentos
- Tabela 5 Fatores de demanda para iluminação e pequenos aparelhos
- Tabela 6 Fatores de demanda para aparelhos de aquecimento de água
- Tabela 7 Fatores de demanda para secadores de roupas, máquina de lavar louça, forno de micro-ondas, e hidromassagem
- Tabela 8 Fatores de demanda para fogões elétricos e fornos elétricos
- Tabela 9 Características de aparelhos de ar-condicionado tipo janela e split
- Tabela 10 Fatores de demanda para aparelhos de ar-condicionado residencial
- Tabela 11 Fatores de demanda para aparelhos de ar-condicionado não-residencial
- Tabela 12 Características e demanda de motores monofásicos
- Tabela 13 Características e demanda de motores trifásicos
- Tabela 14 Fatores de demanda para máquinas de solda a transformador, aparelhos de raios-x e galvanização
- Tabela 15 Dispositivos de partida de motores
- Tabela 16 Dimensionamento das categorias de atendimento 220/127 V
- Tabela 17 Dimensionamento das categorias de atendimento 220 V
- Tabela 18 Dimensionamento das categorias de atendimento 380/220 V

- Tabela 19 Dimensionamento das categorias de atendimento 230/115 $\rm V$
- Tabela 20 Dimensionamento das categorias de atendimento 230 V
- Tabela 21 Dimensionamento das categorias de atendimento 254/127 V
- Tabela 22 Dimensionamento das categorias de atendimento 440/220 V
- Tabela 23 Dimensionamento das categorias de atendimento 240/120 V
- Tabela 24 Conversão de unidades
- Tabela 25 Eletrodutos conversão de milímetros para polegadas
- Tabela 26 Dimensões das luvas de rosca cilíndrica
- Tabela 27 Distância entre os Condutores e o Solo (metros)

TABELA 4 - Potência média de aparelhos e equipamentos

Código consum	Descrição	Potência média estimada (W)
1	Aparelho de <i>Blu-ray</i>	12
2	Aparelho de DVD	15
3	Aparelho de som	110
4	Aquecedor de ambiente	1.612
5	Aquecedor de água por acumulação (<i>Boiler</i>) - 50 a 100 L	1.000
6	Aquecedor de água por acumulação (<i>Boiler</i>) -150 a 200 L	1.250
7	Aquecedor de água por acumulação (Boiler) - 250 L	1.500
8	Aquecedor de água por acumulação (<i>Boiler</i>) - 300 a 350 L	2.000
9	Aquecedor de água por acumulação (Boiler) - 400 L	2.500
10	Aquecedor de mamadeira	100
11	Aquecedor de marmita	60
12	Aspirador de pó	717
13	Assadeira	500 a 1.000
14	Batedeira	200 a 750
15	Bebedouro	70 a 110
16	Bomba d'água 1 cv	1.051
17	Bomba d'água ½ cv	613
18	Bomba d'água ¼ cv	335
19	Bomba d'água ¾ cv	849
20	Cafeteira elétrica	219
21	Cafeteira expresso	794
22	Carregador lento - veículo elétrico	3.300
23	Chaleira elétrica	941
24	Chuveiro elétrico	4.500 a 6.600
25	Computador	300
26	Enceradeira	450
27	Espremedor de frutas	54
28	Estabilizador	300 a 1.400
29	Exaustor para fogão	160
30	Ferro elétrico automático a seco	1.050
31	Ferro elétrico automático a vapor	1.200
32	Fogão elétrico - cooktop de indução	7.000
33	Forno elétrico embutido 50 L	2.422
34	Forno micro-ondas 25 L	1.398

TABELA 4 - Potência média de aparelhos e equipamentos (continuação)

Código	Descrição	Potência média estimada (W)
35	Freezer vertical frost free	75
36	Freezer vertical/horizontal	66
37	Frigobar	26
38	Fritadeira elétrica	1.500
39	Furadeira	235
40	Geladeira frost free - 342 L	55
41	Geladeira frost free - 443 L	118
42	Grill	1.600
43	Home Theather	350
44	Impressora	15
45	Lavadora de louças	1.543
46	Lavadora de roupas 15 kg	2.280
47	Liquidificador	1.200
48	Monitor LCD	37
49	Notebook	30
50	Panela elétrica	1.100
51	Pipoqueira residencial	1.200
52	Prancha (chapinha)	33
53	Projetor	345
54	Purificador de ar	66
55	Roteador	7
56	Sanduicheira	1.000
57	Secador de cabelo	2.120
58	Televisor LCD	217
59	Televisor LED	112
60	Triturador de lixo	1.214
61	Ventilador	80 a 250
62	Videogame	120

- A Tabela 4 é <u>orientativa</u>. Os valores foram baseados em informações de fabricantes e sites do INMETRO e PROCEL. Esses valores não substitui os dados dos fabricantes.
- II. O projetista deverá consultar os respectivos manuais dos fabricantes para melhor exatidão das cargas instaladas.
- III. No processo de determinação dos limites de fornecimento de energia elétrica (monofásico, bifásico ou trifásico), o consumidor deverá definir a carga instalada como a soma das potências, em quilowatts (kW), dos aparelhos eletrodomésticos, sistemas de iluminação, aquecimento, refrigeração, motores e máquinas de solda que possam ser conectados à instalação elétrica da sua unidade consumidora.
- IV. Os limites de fornecimento estão definidos no item 6.3 desta norma, enquanto as informações de fator de utilização associadas a carga instalada destinam ao cálculo da demanda da unidade consumidora encontram-se nas Tabelas 4 a 9.

TABELA 5 - Fatores de demanda para iluminação e tomadas de uso geral para Unidades Consumidoras

Descrição	Carga instalada	Fator de demanda
Descrição	(kW)	(%)
	0 < C ≤ 1,0	86
	1,0 < C ≤ 2,0	75
	2,0 < C ≤ 3,0	66
	3,0 < C ≤ 4,0	59
	4,0 < C ≤ 5,0	52
Residência	5,0 < C ≤ 6,0	45
	6,0 < C ≤ 7,0	40
	7,0 < C ≤ 8,0	35
	$8.0 < C \le 9.0$	31
	9,0 < C ≤ 10,0	27
	10,0 < C ≤ 75,0	24
Restaurante e Similares	-	86
Loja e Similares	-	86
Igreja e Similares	-	86
Hospital e Similares	para os primeiros 50,0 kW	40
riospitat e similares	para o que exceder de 50,0 kW	50
	para os primeiros 20,0 kW	50
Hotel e Similares	para os seguintes 80,0 kW	40
	para o que exceder de 100,0 kW	30
Área comum, Áreas de Serviço, Garagem e Similares	-	86
Escritório	para os primeiros 20,0 kW	86
	para o que exceder de 20,0 kW	70
Escola e Similares	para os primeiros 12,0 kW	86
LSCOIA & SIIIIIIAIRS	para o que exceder de 12,0 kW	50

Descrição	Carga instalada	Fator de demanda
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	(kW)	(%)
Clube e Similares	-	86
Barbearia, Salão de Beleza e Similares	-	86
Banco e Similares	-	86
Canteiro de Obras e Similares	-	86
Auditório, Salão de Exposição e Similares	-	86
Quartel e Similares	Para os primeiros 15,0 kW	100
Quarter e Jiiiitares	Para o que exceder de 15,0 kW	40

- Instalações em que a carga será utilizada de maneira simultânea deverão ser consideradas com o fator de demanda de 100%;
- Não estão sendo considerados nesta tabela cargas do tipo letreiro e iluminação de vitrines;
- III. No cálculo da demanda residencial o valor percentual de cada faixa é acumulativo, ou seja, é a soma dos valores de cada faixa.
- IV. É recomendável que a previsão de cargas de iluminação e tomada feita pelo consumidor atenda as prescrições da ABNT NBR 5410.

TABELA 6 - Fatores de demanda para aparelhos de aquecimento de água

N.º de aparelhos	Fator de demanda	N.º de aparelhos	Fator de demanda
	(%)		(%)
1	100	14	41
2	75	15	40
3	70	16	39
4	66	17	38
5	62	18	37
6	59	19	36
7	56	20	35
8	53	21	34
9	51	22	33
10	49	23	32
11	47	24	31
12	45	Acima de 24	30
13	43		

TABELA 7 - Fatores de demanda para secadores de roupas, máquina de lavar louça, forno de micro-ondas e hidromassagem

N.º de aparelhos	Fator de demanda
iii de aparecios	(%)
1	100
2 a 4	70
5 a 6	60
7 a 9	50
Acima de 9	45

TABELA 8 - Fatores de demanda para fogões elétricos e fornos elétricos

N.º de aparelhos	Fator de demanda	N.º de aparelhos	Fator de demanda
in de aparemes	(%)	in de apareaios	(%)
1	100	8	32
2	60	9	31
3	48	10 a 11	30
4	40	12 a 15	28
5	37	16 a 20	27
6	35	21 a 25	26
7	33	Acima de 25	25

TABELA 9 - Características de aparelhos de ar-condicionado tipo janela e split

Capacidade	Tipo		
(BTU/h)	Janela	Split	
	Potência (W)		
5.000	625	-	
6.000	760	-	
7.000	-	740	
7.100	900	-	
8.500	1.300	-	
9.000	-	990	
10.000	1.400	-	
12.000	1.600	1.260	
14.000	1.900	-	

Capacidade	Tipo		
(BTU/h)	Janela	Split	
	Potência (W)		
15.000	2.000	-	
18.000	2.600	2.180	
21.000	2.800	-	
22.000	-	2.430	
24.000	-	2.890	
30.000	3.600	3.380	
36.000	-	4.195	
48.000	-	4.990	
60.000	-	6.710	

TABELA 10 - Fatores de demanda para aparelhos de ar-condicionado residencial

N.º de aparelhos	Fator de demanda	N.º de aparelhos	Fator de demanda
iv. de apareiros	(%)	iv. de aparemos	(%)
1	100	9 a 11	70
2	88	12 a 14	68
3	82	15 a 16	67
4	78	17 a 22	66
5	76	23 a 30	65
6	74	31 a 50	64
7	72	Acima de 50	62
8	71		

TABELA 11 - Fatores de demanda para aparelhos de ar-condicionado não-residencial

N.º de aparelhos	Fator de demanda		
N. de apareiros	(%)		
1 a 10	100		
11 a 20	90		
21 a 30	82		
31 a 40	80		
41 a 50	77		
Acima de 50	75		

TABELA 12 - Características e demanda de motores monofásicos

Valores nominais do motor					Demanda individual absorvida da rede					
	Potência				Corrente		1 motor r	2 motores	3 a 5 motores	Mais de
Eixo		bsorvida da rede Cos		η	127 V 220 V	5 motores				
(CV)	(kW)	(kVA)			(A)		(kVA)			
1/3	0,52	0,74	0,71	0,47	3,34	1,93	0,74	0,59	0,51	0,44
1/2	0,66	0,91	0,72	0,56	4,15	2,40	0,91	0,73	0,64	0,55
3/4	0,89	1,24	0,72	0,62	5,62	3,25	1,24	0,99	0,87	0,74
1	1,10	1,48	0,74	0,67	6,75	3,91	1,48	1,19	1,04	0,89
1.1/2	1,58	1,92	0,82	0,70	8,74	5,06	1,92	1,54	1,35	1,15
2	2,07	2,44	0,85	0,71	11,09	6,42	2,44	1,95	1,71	1,46
3	3,07	3,19	0,96	0,72	14,52	8,41	3,19	2,56	2,24	1,92
4	3,98	4,14	0,96	0,74	18,84	10,91	4,14	3,32	2,90	2,49
5	4,91	5,22	0,94	0,75	23,73	13,74	5,22	4,18	3,65	3,13
7.1/2	7,46	7,94	0,94	0,74	36,07	20,88	7,94	6,35	5,55	4,76
10	9,44	10,04	0,94	0,78	45,63	26,42	10,04	8,03	7,03	6,02

- I. Os valores constantes nas colunas referentes a potência individual absorvida da rede (kVA), refere-se ao kVA de cada um dos motores.
- II. Caso existam motores de potências superiores às citadas, a Concessionária deve ser consultada;
- III. Para encontrar os valores das demandas individuais dos motores em kW, multiplica-se a demanda em kVA pelo fator de potência equivalente. Ex.: Demanda individual para dois motores de 10 cv = 8,03 (kVA) x 0,94 (cos) = 7,55 kW POR MOTOR.

TABELA 13 - Características e demanda de motores trifásicos

Valores nominais do motor					Demar		dual abso ede	rvida da					
Po	otência				Corrente								
Eixo	da ı	rvida rede ta 2)	Cos	Cos	Cos	Cos	η	220 V	380 V	1 motor	2 motores	3 a 5 motores	Mais de 5 motores
(CV)	(kW)	(kVA)		(A)		(kVA)							
1/6	0,25	0,37	0,67	0,49	0,98	0,57	0,37	0,30	0,26	0,22			
1/4	0,34	0,48	0,69	0,55	1,27	0,74	0,48	0,39	0,34	0,29			
1/3	0,41	0,55	0,74	0,60	1,45	0,84	0,55	0,44	0,39	0,33			
1/2	0,57	0,72	0,79	0,65	1,88	1,09	0,72	0,57	0,50	0,43			
2/3	0,82	1,08	0,76	0,67	2,84	1,65	1,08	0,87	0,76	0,65			
1	1,13	1,38	0,82	0,65	3,62	2,10	1,38	1,10	0,97	0,83			
1.1/2	1,58	2,02	0,78	0,70	5,31	3,07	2,02	1,62	1,42	1,21			
2	1,94	2,39	0,81	0,76	6,28	3,63	2,39	1,91	1,67	1,43			
3	2,91	3,63	0,80	0,76	9,53	5,52	3,63	2,91	2,54	2,18			
4	3,82	4,97	0,77	0,77	13,03	7,54	4,97	3,97	3,48	2,98			
5	4,78	5,62	0,85	0,77	14,76	8,54	5,62	4,50	3,94	3,37			
6	5,45	6,49	0,84	0,81	17,03	9,86	6,49	5,19	4,54	3,89			
7.1/2	6,90	8,12	0,85	0,80	21,30	12,33	8,12	6,49	5,68	4,87			
10	9,68	10,76	0,90	0,76	28,24	16,35	10,76	8,61	7,53	6,46			
12.1/2	11,80	12,04	0,98	0,78	31,59	18,29	12,04	9,63	8,42	7,22			
15	13,63	14,98	0,91	0,81	39,31	22,76	14,98	11,98	10,48	8,99			
20	18,40	20,67	0,89	0,80	54,26	31,41	20,67	16,54	14,47	12,40			
25	22,44	24,66	0,91	0,82	64,71	37,46	24,66	19,73	17,26	14,79			
30	26,93	29,59	0,91	0,82	77,65	44,96	29,59	23,67	20,71	17,75			

- I. Os valores constantes nas colunas referentes a potência individual absorvida da rede (kVA), refere-se ao kVA de cada um dos motores.
- II. Caso existam motores de potências superiores às citadas, a Concessionária deve ser consultada;
- III. Para encontrar os valores das demandas individuais dos motores em kW, multiplicase a demanda em kVA pelo fator de potência equivalente. Ex.: Demanda individual para dois motores de 10 cv = 8,61 (kVA) x 0,90 (cos) = 7,75 kW POR MOTOR.

TABELA 14 - Fatores de demanda para máquinas de solda a transformador, aparelhos de raios-x e galvanização

Equipamento	Potência do	Fator de demanda	
	aparelho	(%)	
	1° Maior	100	
Solda a arco e aparelhos de galvanização	2° Maior	70	
	3° Maior	40	
	Soma dos Demais	30	
Solda a resistência	Maior	100	
Solua a resistencia	Soma dos Demais	60	
Aparolho do rajos V	Maior	100	
Aparelho de raios X	Soma dos Demais	70	

 As máquinas de solda do tipo motor gerador deverão ser consideradas como motores.

TABELA 15 - Dispositivos de partida de motores

Tipo de Partida	Tipo de Chave	Potência do Motor (CV)	Tensão Secundária (V)	Taps	Taps de Partida				
MOTORES MONOFÁSICOS									
Direta	_	≤ 5	220/127		-				
Direct		≤ 7,5	380/220						
	мото	DRES TRIFÁSIO	cos						
Direta		≤ 5	220/127	_	-				
J., G.		≤ 7,5	380/220						
	Estrela/Triângulo	5 < P ≤ 15	220/127		-				
	Lsu eta/ Trianguto	$7,5 < P \le 25$	380/220	-					
	Série Paralelo	5 < P ≤ 25	220/127	_					
Indireta	Serie Tarateto	$7,5 < P \le 25$	380/220						
Manual	Chave Compensadora	5 < P ≤ 25	220/127	50, 65,	50				
	chave compensationa	$7,5 < P \le 25$	380/220	80	30				
	Resistência ou Reatância de Partida	Igual a chave série - paralelo desde quem vem os valores em ohms das resistências ou iguais ou maiores que o valor obtido da relação 60 ÷ CV (220/127) e 160 ÷ CV (380/220)							
	Estrela/Triângulo	5 < P ≤ 40							
	LSu eta/ Trianguto	$7,5 < P \le 40$	As outras características são idênticas as das chaves manuais						
Indireta	Série Paralelo	5 < P ≤ 40							
Automática	Serie Farateto	$7,5 < P \le 40$							
	Chave Compensadora	5 < P ≤ 40							
	chave compensacora	$7,5 < P \le 40$							
	Soft Starter	Ca		-					
Eletrônica	Inversor de Frequência	Sem restrições	380/220						

- Em substituição à chave estrela-triângulo, permite-se chaves de reatância, desde que reduzam a tensão de partida a pelo menos 65%;
- II. A tensão de partida deve ser reduzida, no mínimo, a 65%;
- III. Deve existir bloqueio que impeça a partida do motor com as escovas levantadas;
- IV. Métodos de partida diferentes dos citados deverão ser informados previamente à Concessionária para análise;
- V. Pode haver motores com tensões de placas 220/380/440/760 V, funcionando em ambas as tensões a rede, bastante ligar em estrela paralela ou triangulo paralelo, podendo o motor ter 9 ou 12 terminais;
- VI. Na prática, adota-se HP = cv.

TABELA 16 - Dimensionamento das categorias de atendimento - 220/127 V

									Condut	ores			Aterrame	nto		Eletroduto	Po	ste		
						Rama	l de conex	ão (Al)		Embutido e	de entrada e Subterrânec obre))	o	reado)	nético	0e				
		00	ses	da	alada	ase)	fase)		Isolação	PVC 70°C	XLPE/HEPI	R/EPR 90°C	ment	qoo o	ımagr	errân	T ol	ado	ete	
	Categoria	Número de fios	Número de fases	Demanda	Carga instalada	Multiplex (condutor fase)	Concêntrico (condutor	Condutor neutro	Condutor fase	Condutor neutro	Condutor fase	Condutor neutro	Condutor aterramento	Haste para aterramento (aço cobreado)	Disjuntor termomagnético	Embutido e subterrâneo	Concreto duplo T	Aço galvanizado	Pontalete	Tipo Caixa
				(kVA)	(kW)				(mm²)			(m	nm²)	Hasi	(A)	(pol)	(da	aN)	(daN)	
8	M1			-	0 < C ≤ 3,8	10	10	10	6	6	6	6	6		30/32	3/4"				
Monofásico	M2	2	1	-	3,8 < C ≤ 6,3	10	10	10	10	10	6	6	6 ² ou 10 ²	1H	50	3/4				CMI-01
Wo	M3			-	6,3 < C ≤ 8,8	16	16	16	16	16	10	10	10 ² ou 16 ²		70	1"				
0	B1			-	0 < C ≤ 10,1	10	10	10	10	10	10	10	10		50	3/4"		90		
Bifásico	B2	3	2	-	10,1 < C ≤ 12,7	16		16	16	16	10(16)1	10(16) ¹	10 ² ou 16 ²	1H	60/63	1"	100	90	75	
8	В3			-	12,7 < C ≤ 17,7	25		25	25	25	16(25)1	16(25)1	16		80	1 1/4"				
	T1			0 < D ≤ 15,2		10		10	10	10	6(10)1	6(10)1	10		40	3/4"				CMI-02
	T2			15,2 < D ≤ 19,0		16	N.A.	16	16	16	10	10	10 ² ou 16 ²		50	1"				
Trifásico	Т3	4	3	19,0 < D ≤ 26,6	0 < C ≤ 75	25		25	25	25	16(25)1	16(25)1	16	3H	70	1 1/4"		200		
Ē	T4			26,6 < D ≤ 38,1		35		25			25(35)1	25	16		100	1 1/2"	200			
	T5			38,1 < D ≤ 57,1		70		35	N.A.	N.A.	50(70)1	25(35)1	25(35)1		150	2"	300	N.A.	N.A.	CMD - BT 200
	Т6			57,1 < D ≤ 81,5		120		70			95	50	50		200	2 1/2"	500			22

- "1" Usar cabo de maior seção quando ramal de entrada for subterrâneo.
- "2" Dimensão do condutor de aterramento deve ser igual ao condutor de fase.
- " # " Indica o número de fases do circuito.
- N.A. Não se Aplica

- I. Tabela 16 válida para empresas EAC, EMR, EMS, EMT, ERO, ESE e ESS;
- II. Condutores e eletrodutos estão dimensionados com valores mínimos;
- III. Para as categorias T5 e T6 deverá ser instalado a caixa padrão para medição direta para medidor de 200A;
- IV. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE, fases CA, neutro nu CAL;
- V. A coluna proteção está dimensionada para o limite superior de cada faixa. A proteção a ser utilizada será calculada em função da demanda de projeto;
- VI. Os condutores para os ramais de entrada deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VII. Os condutores para os ramais subterrâneos, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VIII. Nos casos em que há distinção de seções entre as opções de entrada embutido ou subterrâneo, leia-se, para XX(YY)¹:
 - XX = seção do condutor considerando método de instalação embutido; ou
 - YY = seção do condutor considerando método de instalação subterrâneo.
 - IX. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada;

- X. A categoria bifásica ficará para consumidores com carga maior que 8,8 kW e para o atendimento de instalações com equipamentos que requeiram números de fases e/ou tensão própria destas categorias;
- XI. A categoria trifásica ficará para o atendimento de instalações com equipamentos que requeiram números de fases e/ou tensão própria destas categorias.
- XII. Todos as faixas de demanda provável foram aplicadas considerando fator de potência 0,92.
- XIII. A concessionária poderá atender a unidade consumidora em tensão secundária de distribuição com ligação bifásica (B) ou trifásica (T), ainda que ela não apresente carga instalada suficiente para tanto, desde que o consumidor se responsabilize pelo pagamento da diferença de preço do medidor, pelos demais materiais e equipamentos de medição a serem instalados, bem como eventuais custos de adequação da rede.
- XIV. A opção de ramal em fachada fica limitado ao cabo do ramal de entrada de seção máxima de 35mm²;
- XV. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25.

TABELA 17 - Dimensionamento das categorias de atendimento - 220 V

								Cond	dutores			Aterram	ento	9	Eletroduto	Pos	ste		
		fios	fases	alada		mal de exão (<i>l</i>		Er	nbutido	de entrada e Subterrâr Cobre)		ento	nto	magnético	subterrâneo	H	<u>o</u>	ste	ø.
	Categoria	Número de f	Número de fa	Carga instalada	ultiplex)	ıcêntrico)	neutro	Isolaçã 70°		XLPE/HE 90		aterramento	aterramento	tor termoma	ou subter	eto duplo	galvanizado	Pontalete	Tipo Caixa
	O	Nún	Núm	U	Condutor multiplex (fase)	Condutor concê (fase)	Condutor	Condutor fase	Condutor neutro	Condutor fase	Condutor	Condutor	Haste para a	Disjuntor	Embutido o	Concreto	Aço ga		Ε.
				(KW)				(n	nm²)			(mm²)		(A)	(pol)	(da	ıN)	(daN)	
.8	M1			C ≤ 5,0	10	10	10	6	6	6	6	6		30/32	2 / 411				
Monofásico	M2	3	2	5,0 < C ≤ 7,5	10	10	10	10	10	6	6	6¹ ou 10¹	1H	40	3/4"	100	90	75	CMI-01
Wol	M3			$7,5 < C \le 10,0$	10	10	10	10	10	10	10	10		50	1"				

"1" - Dimensão do condutor de aterramento deve ser igual ao condutor de fase.

"#" Indica o número de fases do circuito.

- I. Condutores e eletrodutos estão dimensionados com valores mínimos;
- II. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25;
- III. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE, fases CA, neutro nu CAL;
- IV. A coluna proteção está dimensionada para o limite superior de cada faixa;
- V. Os condutores para os ramais de entrada deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VI. Os condutores para os ramais subterrâneos, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VII. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada.

TABELA 18 - Dimensionamento das categorias de atendimento - 380/220 V

									Cond	utores			Aterrame	nto		Eletroduto	Po	ste		
					da		ımal dı exão (Em	bu tid o	de entra e Subter Cobre)		nto	to	gnético	âneo	_			
	ria	e fios	e fases	Demanda	nstala	lex	rrico	0.		ão PVC °C		EPR/EPR	rrame	amen	тот	ubterr		nizado	Pontalete	ixa
	Categoria	Número de fios	Número de fases	Dem	Carga instalada	Condutor multiplex (fase)	Condutor concêntrico (fase)	Condutor neutro	Condutor fase	Condutor neutro	Condutor fase	Condutor neutro	Condutor aterramento	Haste para aterramento	Disjuntor termomagnético	Embutido ou subterrâneo	Concreto duplo	Aço galvanizado	Pont	Tipo Caixa
				(kVA)	(kW)				(m	m²)			(mm²)		(A)	(pol)	(d	aN)	(daN)	
0	M1			-	0 < C ≤ 6,0	10	10	10	6	6	6	6	6		30/32	3/4"				CMI-01
Monofásico	M2	2	1	-	6,0 < C ≤ 11,0	10	10	10	10	10	6	6	6 ² ou 10 ²	1H	50	3/4	100	90		/ CMI-02
Mone	M3			-	11,0 < C ≤ 15,4	16		16	16	16	10	10	10 ² ou 16 ²		70	1"				/ CMI-03
0	B1			-	0 < C ≤ 17,6	10	N.A.	10	10	10	10	10	10		50	3/4"				
Bifásico	B2	3	2	-	17,6 < C ≤ 22,0	16		16	16	16	10 (16) ¹	10 (16) ¹	10 ² ou 16 ²	1H	60/63	1"	100	90	75	
ά	В3			-	22,0 < C ≤ 26,3	25		25	25	25	16	16	16		70	1 1/4"				CMI-02
	T1			$0 < D \le 26,1$		10		10	10	10	6	6	6 ² ou 10 ²		40	3/4"		90		/ CMI-03
0	T2			26,1 < D ≤ 35,4		16		16	16	16	10	10	10 ² ou 16 ²		50	1"	100	70		CMI-U3
Trifásico	T3	4	3	$35,4 < D \le 46,1$	0 < C ≤ 75	25	N.A.	25	25	25	16 (25) ¹	16 (25) ¹	16	3H	70	1 1/4"		200		
F	T4			46,1 < D ≤ 65,8		35		25	50	25	35	25	25		100	1 1/2"	200	200		
	T5			$65,8 < D \le 81,5$		70		35	70	35	50 (70)1	25 (35)1	25 (35)1		125	2"	300	N.A.	N.A.	CMD - BT 200

- "1" Usar cabo de maior seção quando ramal de entrada for subterrâneo.
- "2" Dimensão do condutor de aterramento deve ser igual ao condutor de fase.
- "#" Indica o número de fases do circuito.
- N.A. Não se Aplica.

- I. Condutores e eletrodutos estão dimensionados com valores mínimos;
- II. Para as categorias T5 deverá ser instalada a caixa padrão para medição direta para medidor de 200 A;
- III. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE, fases CA, neutro nu CAL;
- IV. A coluna proteção está dimensionada para o limite superior de cada faixa. A proteção a ser utilizada será calculada em função da demanda de projeto;
- V. Os condutores para os ramais de entrada deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VI. Os condutores para os ramais subterrâneos, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VII. Nos casos em que há distinção de seções entre as opções de entrada embutido ou subterrâneo, leia-se, para XX(YY)1:
 - XX = seção do condutor considerando método de instalação embutido; ou
 - YY = seção do condutor considerando método de instalação subterrâneo.
- VIII. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada;

- IX. A categoria bifásica ficará para consumidores com carga instalada maior que 17,6 kW e para uso restrito ao atendimento de casos especiais, tais como os de instalações com equipamentos que requeiram números de fases e/ou tensão própria destas categorias;
- X. A categoria trifásica ficará para consumidores com carga instalada maior que 22,00 kW ou maior que 15,4 kW em locais onde não seja utilizado padrão bifásico, conforme item 5.6 ou para o atendimento de instalações com equipamentos que requeiram números de fases e/ou tensão própria destas categorias;
- XI. A concessionária poderá atender a unidade consumidora em tensão secundária de distribuição com ligação bifásica (B) ou trifásica (T), ainda que ela não apresente carga instalada suficiente para tanto, desde que o consumidor se responsabilize pelo pagamento da diferença de preço do medidor, pelos demais materiais e equipamentos de medição a serem instalados, bem como eventuais custos de adequação da rede;
- XII. A opção de ramal em fachada fica limitado ao cabo do ramal de entrada de seção máxima de 35mm²;
- XIII. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25.

TABELA 19 - Dimensionamento das categorias de atendimento - 230/115 V

								Condu	ıtores			Aterrame	nto		Eletroduto	Pos	te		
					Ramal	de conexã	ão (Al)		Embutido	de entrada e Subterrâne obre)	o	0		nético	oə				
		SC	fases	lada				Isolação	PVC 70°C	XLPE/HEPR	/EPR 90°C	nent	ento	nagr	ırrân	L o	op	e	
	Categoria	Número de fios	Número de fas	Carga instalada	Condutor multiplex (fase)	Condutor concêntrico (fase)	Condutor neutro	Condutor fase	Condutor neutro	Condutor fase	Condutor neutro	Condutor aterramento	Haste para Aterramento	Disjuntor termomagnético	Embutido ou subterrâneo	Concreto Duplo T	Aço Galvanizado	Pontalete	Tipo Caixa
				(KW)				(mr	n²)			(mm²)		(A)	(pol)	(da	ıN)	(daN)	
0	M1			0 < C ≤ 3,45	10	10	10	6	6	6	6	6		30/32	2 / 4"				
fásicc	M2	2	4	3,45 < C ≤ 5,75	10	10	10	10	10	6	6	6¹ ou 10¹		50	3/4"				CMI-01
Monofásico	M3	Z		5,75 < C ≤ 8,05	16		16	16	16	10	10	10¹ ou 16¹		70	1"				CMI-U1
	B1			$0 < C \le 6,9$	10		10	6	6	6	6	6	1H	30	3/4"	100	90	75	
0	B2			$6,9 < C \le 9,2$	10	N.A.	10	10	10	6	6	6¹ ou 10¹		40	3/4				
Bifásico	В3	3	2	9,2 < C ≤ 11,5	16		16	16	16	10	10	10¹ ou 16¹		50	1"				CMI-02
ά	B4			11,5 < C ≤ 15,0	25		25	25	25	16	16	16		70	ı				
	B5			15,0 < C ≤ 23,0	35		25	35	25	25	25	16		100	1 1/4"				

Legenda:
"1" - Dimensão do condutor de aterramento deve ser igual ao condutor de fase.

[&]quot;#" Indica o número de fases do circuito.

- I. Condutores e eletrodutos estão dimensionados com valores mínimos;
- II. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE, fases CA, neutro nu CAL;
- III. A coluna proteção está dimensionada para o limite superior de cada faixa. A proteção a ser utilizada será calculada em função da demanda de projeto;
- IV. Os condutores para os ramais de entrada, monofásicos e bifásicos deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- V. Os condutores para os ramais subterrâneo, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VI. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada;
- VII. As categorias B1 e B2 ficarão para consumidores com carga instalada maior que 8,05 kW e para uso restrito ao atendimento de casos especiais, tais como os de instalações com equipamentos que requeiram números de fases e/ou tensão própria destas categorias;
- VIII. A concessionária poderá atender a unidade consumidora em tensão secundária de distribuição com ligação bifásica (B) ou trifásica (T), ainda que ela não apresente carga instalada suficiente para tanto (as cargas estão definidas na Tabela 19), desde que o consumidor se responsabilize pelo pagamento da diferença de preço do medidor, pelos demais materiais e equipamentos de medição a serem instalados, bem como eventuais custos de adequação da rede;
 - IX. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25.

TABELA 20 - Dimensionamento das categorias de atendimento - 230 V

								Conduto	es			Aterramei	nto		Eletroduto	Pos	ste		
					Ramal de	conex	ão (Al)	Em	Ramal de butido e Si (Cobi	ubterrânec)	0		ético	e0				
		fios	fases	ılada				Isolação	PVC 70°C	XLPE/HEF		nent	ento	nagn	subterrâneo	⊢ o.	op	e.	
	Categoria	Número de f	Número de fa	Carga instalada	Condutor multiplex (fase)	Condutor concêntrico (fase)	Condutor neutro	Condutor fase	Condutor neutro	Condutor fase	Condutor neutro	Condutor aterramento	Haste para aterramento	Disjuntor termomagnético	Embutido ou subto	Concreto duplo	Aço galvanizado	Pontalete	Tipo Caixa
				(KW)				(mm²)				(mm²)		(A)	(pol)	(da	ıN)	(daN)	
	M1			0 < C ≤ 6,9	10	10	10	6	6	6	6	6		30/32					
02	M2			6,9 < C ≤ 9,2	10	10	10	10	10	6	6	6¹ ou 10¹		40	3/4"				
Monofásico	M3	2	1	9,2 < C ≤ 11,5	10		10	10	10	6	6	6¹ ou 10¹	1H	50		100	90	75	CMI-01
Mor	M4			11,5 < C ≤ 15,0	16	N.A.	16	16	16	10	10	10¹ ou 16¹		70	1"				
	M5			15,0 < C ≤ 23,0	35		25	35	25	25	25	16		100	1 1/4"				

[&]quot;1" - Dimensão do condutor de aterramento deve ser igual ao condutor de fase.

[&]quot;#" Indica o número de fases do circuito.

N.A. - Não se Aplica.

- I. Condutores e eletrodutos estão dimensionados com valores mínimos;
- II. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE, fases CA, neutro nu CAL;
- III. A coluna proteção está dimensionada para o limite superior de cada faixa. A proteção a ser utilizada será calculada em função da demanda de projeto;
- IV. Os condutores para os ramais de entrada deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- V. Os condutores para os ramais subterrâneos, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VI. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada;
- VII. No caso de agrupamento, as cargas instaladas (consumidor monofásico e bifásico) deverão ser somadas as demandas e após, associar a faixa adequada;
- VIII. Tensão 230 V, sistema monofásico com neutro para EMR;
 - IX. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25.

TABELA 21 - Dimensionamento das categorias de atendimento - 254/127 V

								Condut	ores			Aterrame	ento		Eletroduto	Po	ste		
	m.	fios	fases	alada	Rama	l de cor (Al)	ıexão	Isolaçã	nbutido e			aterramento	mento	termomagnético	subterrâneo	duplo T	ado	ete	Э
	Categoria	Número de	Número de 1	Carga instalada	Condutor multiplex (fase)	Condutor concêntrico (fase)	Condutor neutro	Condutor fase	Condutor neutro	Condutor fase	Condutor neutro	Condutor aterr:	Haste para aterramento	Disjuntor term	Embutido ou sub	Concreto du	Aço galvanizado	Pontalete	Tipo Caixa
				(KW)				(mm	²)			(m m ²)		(A)	(pol)	(da	aN)	(daN)	
	M1			0 < C ≤ 12,0	10	10	10	10	10	10	10	10		50	3/4"				
Monofásico	M2	3	2	12,0 < C ≤ 15,0	16	16	16	16	16	10	10	10¹ ou 16¹	1H	60		100	90	75	CMI-01
Mong	M3		_	15,0 < C ≤ 25,0	35	N.A.	25	35	25	25	25	16		100	1"				

[&]quot;1" - Dimensão do condutor de aterramento deve ser igual ao condutor de fase.

[&]quot;#" Indica o número de fases do circuito.

- I. Condutores e eletrodutos estão dimensionados com valores mínimos;
- II. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE, fases CA, neutro nu CAL;
- III. Os condutores para os ramais de entrada deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- IV. Os condutores para os ramais subterrâneos, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- V. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada;
- VI. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25;
- VII. Caso o atendimento seja monofásico a 2 fios, 127 V, o dimensionamento deverá ser realizado conforme a Tabela 16.

TABELA 22 - Dimensionamento das categorias de atendimento - 440/220 V

									Conduto	ores			Aterram	ento		Eletroduto	Ро	ste		
						Ramal	de cone (Al)	exão		Ramal de butido e (Co			o		ético	08				
	ria		de Fios	Fases	Carga Instalada	< (fase)	co (fase)	.ro		ão PVC)°C		EPR/EPR °C	rramento	Aterramento	Termomagnético	subterrâneo	Duplo T	Galvanizado	Pontalete	ıixa
	Categoria	ń	Número d	Número de	Carga Ir	Condutor multiplex	Condutor concêntrico	Condutor neutro	Condutor fase	Condutor neutro	Condutor fase	Condutor neutro	Condutor ateri	Haste para Aterr	Disjuntor Ter	Embutido e su	Concreto D	Aço Galva	Pont	Tipo Caixa
					(KW)				(mm²	²)			(mm²)		(A)	(pol)	(da	aN)	(daN)	
Monofásico		M1	3	2	0 < C ≤ 17,0	10	10	10	10	10	6	6	6 ² ou 10 ²	1H	40	3/4"	100	90	75	CMI-01
Mono		M2	J	Z	17,0 < C ≤ 23,0	10	10	10	10(16) ¹	10(16)1	10(16) ¹	10(16)1	10(16) ¹	111	60/63	3/4	100	70	73	CIVII-01

[&]quot;1" - Usar cabo de maior seção quando ramal de entrada for subterrâneo.

[&]quot;2" - Dimensão do condutor de aterramento deve ser igual ao condutor de fase.

[&]quot;#" Indica o número de fases do circuito.

- I. Condutores e eletrodutos estão dimensionados com valores mínimos;
- II. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE, fases CA, neutro nu CAL;
- III. Os condutores para os ramais de entrada deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- IV. Os condutores para os ramais subterrâneos, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- V. Nos casos em que há distinção de seções entre as opções de entrada embutido ou subterrâneo, leia-se, para XX(YY)¹:
 - XX = seção do condutor considerando método de instalação embutido; ou
 - YY = seção do condutor considerando método de instalação subterrâneo.
- VI. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada;
- VII. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25;
- VII. Caso o atendimento seja monofásico a 2 fios, 220 V, o dimensionamento deverá ser realizado conforme a Tabela 18.

TABELA 23 - Dimensionamento das categorias de atendimento - 240/120 V

								Conduto	ores			Aterrame	nto		Ele tro duto	Po	ste		
				la	Ramal	de cone	kão (Al)		nbutido e (Co	bre)		oto		termomagnético	neo				
		fios	ses	talad				Isolação	PVC 70°C	9(D°C	amer	ento	omag	terrâ	T olc	ado	ete	_
	Categoria	Número de f	Número de fases	Carga instalada	Condutor multiplex (fase)	Condutor concêntrico (fase)	Condutor neutro	Condutor fase	Condutor neutro	Condutor fase	Condutor neutro	Condutor aterramento	Haste para aterramento	Disjuntor termo	Embutido ou subterrâneo	Concreto duplo	Aço galvanizado	Pontalete	Tipo Caixa
				(KW)		O		(mm²)			(mm²)		(A)	(pol)	(da	aN)	(daN)	
9	M1			0 < C ≤ 5,0	10	10	10	10	10	6	6	6 ² ou 10 ²		50	3/4"				
Monofásico	M2	2	1	5,1 < C ≤ 6,5	16	10	16	16	16	10	10	10 ² ou 16 ²		60	1"				CMI-01
Mor	M3			6,6 < C ≤ 10,0	25		25	25	25	16	16	16	1H	90	1 1/4"	100	90	75	
0	B1			0 < C ≤ 10,0	10	N.A.	10	10	10	10	10	10		40	3/4"				
Bifásico	B2	3	2	10,1 < C ≤ 15,0	16		16	16	16	10 (16¹)	10 (16¹)	10 ² ou 16 ²		63	1"				CMI-02
8	В3			15,0 < C ≤ 23,0	35		25	35	25	25	25	16		100	ı				

[&]quot;1" - Usar cabo de maior seção quando ramal de entrada for subterrâneo.

[&]quot;2" - Dimensão do condutor de aterramento deve ser igual ao condutor de fase.

[&]quot;#" Indica o número de fases do circuito.

- I. Condutores e eletrodutos estão dimensionados com valores mínimos;
- II. A coluna ramal de conexão se refere a condutores multiplexados de alumínio XLPE,
 fases CA, neutro nu CAL;
- III. A coluna proteção está dimensionada para o limite superior de cada faixa. A proteção a ser utilizada será calculada em função da demanda de projeto;
- IV. Os condutores para os ramais de entrada deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- V. Os condutores para os ramais subterrâneos, deverão possuir isolamento do tipo HEPR, XLPE ou EPR para 0,6/1,0 kV ou PVC para 0,6/1,0 kV;
- VI. Nos casos em que há distinção de seções entre as opções de entrada embutido ou subterrâneo, leia-se, para XX(YY)¹:
 - XX = seção do condutor considerando método de instalação embutido; ou
 - YY = seção do condutor considerando método de instalação subterrâneo.
- VII. O ramal de saída deverá possuir a mesma seção e características do ramal de entrada;
- VIII. Para informações de conversão de eletrodutos de polegadas para milímetros, ver Tabela 25.

TABELA 24 - Conversão de unidades

	Grandezas	Fator de conversão	Para obter
	НР	0,7457	kW
	kW	1,3410	HP
	CV	0,7355	kW
ri a	kW	1,3600	CV
Potência	HP	1,0140	CV
Po	CV	0,9860	HP
	HP	42,4400	BTU/min
	BTU	2,928x10 ⁻⁴	kWh
	kWh	3,415	BTU
	L	1,0	dm³
	dm ³	1,0	L
	Pol ³	16,3870	cm³
ıme	cm ³	0,0610	Pol ³
Volume	ft ³	0,0283	m³
	m^3	35,3100	ft³
	Galão Americano	3,7850	L
	L	0,2642	Galão Americano
	Pol	0,0254	m
0	m	39,3700	Pol
Comprimento	ft	0,3048	m
orim	m	3,2810	ft
ошр	mi	1,6090	km
O	km	0,6210	mi
	mm	0,0394	Pol
	lb	0,4536	kg
05	kg	2,2040	lb
Peso	kg/m	0,6720	lb/ft
	lb/ft	1,4880	kg/m

	Grandezas	Fator de conversão	Para obter
	lb/pol²	0,0707	kg/cm²
	kg/cm²	14,2200	lb/pol ²
	W/1000 ft	3,2810	W/km
	W/km	0,3048	W/1000 ft
ades	g/cm³	0,0361	lb/Pol ³
Outras unidades	lb/Pol³	27,6800	g/cm³
as n	Wh	3.600	J
Outr	J	0,0028	Wh
	cal	4,1860	J
	J	0,2389	cal
	km/h	0,2770	m/s
	m/s	3,6000	km/h

TABELA 25 - Eletrodutos - conversão de polegadas para milímetros

Dosco conformo	Diâmetro interno	Diâmetro	externo	Espessura
Rosca conforme ABNT NBR 8133		Mínimo	Máximo	teórica
		(mm)		(mm)
G 3/4	20	25,2	25,6	1,50
G 1	25	31,5	31,9	1,50
G 1.1/4	32	40,5	41,4	2,00
G 1.1/2	40	46,6	47,6	2,25
G 2	50	58,4	59,0	2,25
G 2.1/2	65	74,0	74,9	2,65
G 3	80	86,8	87,6	2,65

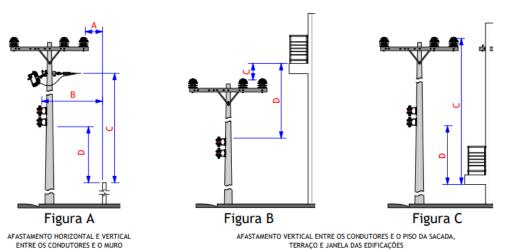
- Os eletrodutos estão dimensionados conforme as normas ABNT NBR 8133 e ABNT NBR 15465.
- II. Esta tabela complementa as Tabelas 16 a 23.

TABELA 26 - Dimensões das luvas de rosca cilíndrica

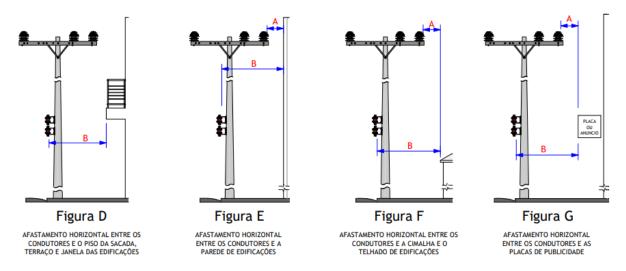
Diâmetro	Rosca conforme ABNT NBR 8133	Diâmetro externo	Comprimento a rosca	Comprimento mínimo (c)
(mm)	ADITI NDIC 0133	(mm)	(mm)	(mm)
20	G 3/4	30,0	25,4 ± 1,80	28,0
25	G 1	37,0	$29,0 \pm 2,30$	34,0
32	G 1.1/4	46,0	$33,6 \pm 2,30$	38,0
40	G 1.1/2	52,0	$33,6 \pm 2,30$	38,0
50	G 2	64,0	42,4 ± 2,30	44,0
65	G 2.1/2	79,0	46,4 ± 2,30	48,0
80	G 3	92,0	52,6 ± 2,30	53,0

- I. Na tabela de equivalência de eletrodutos de milímetros (mm) para polegadas (pol.), os eletrodutos estão dimensionados conforme as ABNT NBR 8133 e ABNT NBR 15465.
- II. Estas tabelas complementam as Tabelas 16 a 23.

Tabela 27 - Distância entre os Condutores e o Solo (metros):

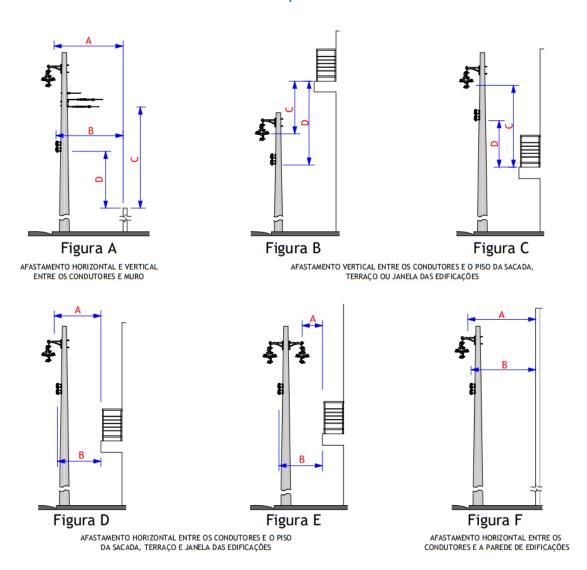

Natureza do Logradouro:	Distância entre os Condutores e o Solo (metros):
Via exclusiva de pedestre em área urbana	3,5
Via exclusiva de pedestre em área rural	4,5
Entradas de prédios e demais locais de uso exclusivo a veículos	4,5
Ruas e avenidas	5,5

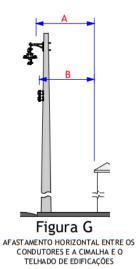
11. DESENHOS

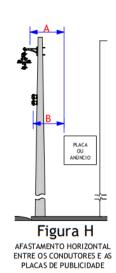

- DESENHO 01 Afastamentos mínimos entre condutores e edificações Rede convencional;
- DESENHO 02 Afastamentos mínimos entre condutores e edificações Rede compacta;
- DESENHO 03 Fornecimento em BT Elementos componentes da entrada;
- DESENHO 04 Condições gerais para entrada de serviço situação da edificação para a escolha do padrão;
- DESENHO 05 Condições gerais para entrada de serviço;
- DESENHO 06 Condições gerais para entrada de serviço;
- DESENHO 07 Afastamentos mínimos entre ramais de conexão Poste no lado oposto da rua;
- DESENHO 08 Afastamentos mínimos entre ramais de conexão Poste no mesmo lado da rua;
- DESENHO 09 Entrada de serviço subterrânea;
- DESENHO 10 Detalhe ramal de entrada subterrâneo;
- DESENHO 11 Ramal de entrada subterrâneo Faixa de advertência Duto Aço Galvanizado;
- DESENHO 12 Ramal de entrada subterrâneo caixa de passagem tipo CP-01 Tampa em Ferro Fundido;
- DESENHO 13 Ramal de entrada subterrâneo caixa de passagem tipo CP-01 Tampa em Concreto;
- DESENHO 14 Ramal de entrada subterrâneo Caixa de passagem tipo CP-02 Tampa em Ferro Fundido;

- DESENHO 15 Ramal de entrada subterrâneo Caixa de passagem tipo CP-02 Tampa em Concreto;
- DESENHO 16 Tampas com aros para caixa de passagem;
- DESENHO 17 Entrada de serviço com medição no poste Poste duplo T;
- DESENHO 18 Entrada de serviço com medição no poste Poste auxiliar;
- DESENHO 19 Entrada de serviço com medição em muro ou mureta Poste duplo T;
- DESENHO 20 Entrada de serviço com medição em muro ou mureta Poste auxiliar;
- DESENHO 21 Entrada de serviço com medição na fachada Instalação de pontalete;
- DESENHO 22 Entrada de serviço com medição na fachada Instalação em parede;
- DESENHO 23 Entrada de serviço com medição na fachada Instalação em parede;
- DESENHO 24 Entrada de serviço com medição na fachada Instalação em parede;
- DESENHO 25 Entrada de serviço com medição na fachada Instalação em parede;
- DESENHO 26 Amarração e conexão do ramal de conexão aéreo Cabo multiplexado;
- DESENHO 27 Detalhes de curvas de entrada;
- DESENHO 28 Pontalete em aço galvanizado;
- DESENHO 29 Poste auxiliar em aço galvanizado Poste seção circular;
- DESENHO 30 Poste auxiliar em aço galvanizado Poste seção quadrada;
- DESENHO 31 Cabeçote para eletroduto;
- DESENHO 32 Poste auxiliar em concreto (duplo T);
- DESENHO 33 Caixa de Medição Individual Tipo CMI-01;

- DESENHO 34 Caixa de Medição Individual Tipo CMI-01 Esquema de ligação Elétrica;
- DESENHO 35 Caixa de Medição Individual Tipo CMI-02;
- DESENHO 36 Caixa de Medição Individual Tipo CMI-02 Esquema de ligação Elétrica;
- DESENHO 37 Caixa de Medição Individual Tipo CMI-03;
- DESENHO 38 Caixa de Medição Individual Tipo CMI-03 Esquema de ligação Elétrica
 Monofásica;
- DESENHO 39 Caixa de Medição Individual Tipo CMI-03 Esquema de ligação Elétrica
 Polifásica;
- DESENHO 40 Entrada e medição em BT com caixa para medição direta até 200A Vista externa;
- DESENHO 41 Caixa para medição direta até 200A Entrada e medição em BT -Esquema de ligação Elétrica;
- DESENHO 42 Caixa de aterramento Modelos;
- DESENHO 43 Caixa de Aterramento Esquema de ligação;
- DESENHO 44 Caixa de Aterramento Esquema de ligação;
- DESENHO 45 Caixa de aterramento Esquema de ligação;
- DESENHO 46 Caixa de inspeção Sistema de aterramento



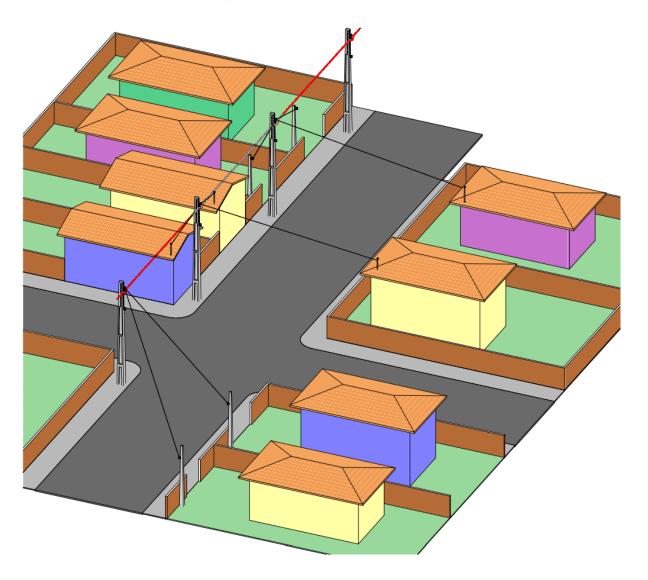


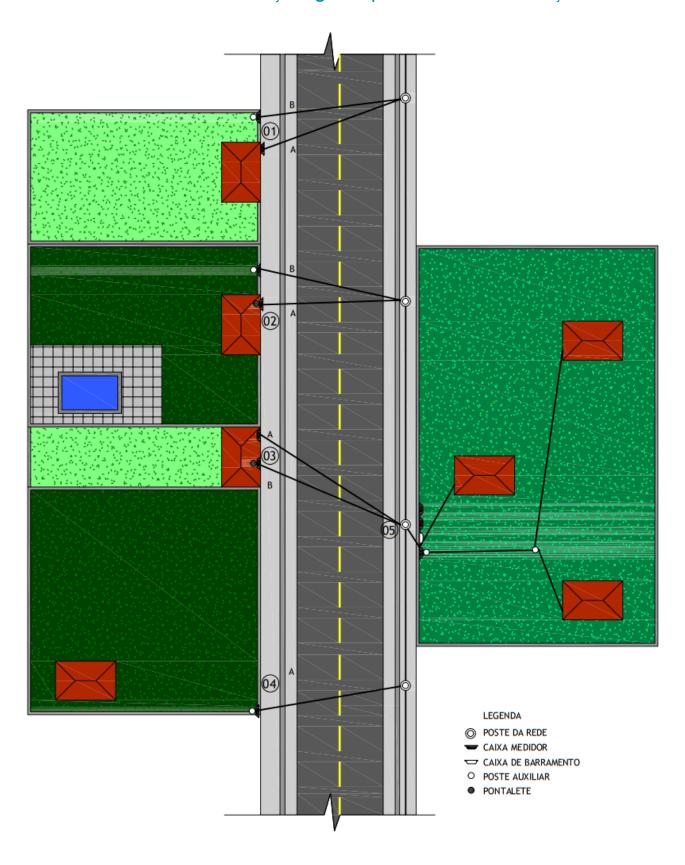

Afastamento mínimo							
	Primário			Comente cocundário			
Figura	15,0 kV		24,2 / 36,2 kV		Somente secundário		
	А	С	Α	С	В	D	
Α	1.000	3.000	1.200	3.200	500	2.500	
В	-	1.000	-	1.200	-	500	
С	-	3.000	-	3.200	-	2.500	
D	1.500	-	1.700	-	1.200	-	
E	1.000	-	1.200	-	1.000	-	
F	1.000	-	1.200	-	1.000	-	
G	1 500	_	1 700	_	1 200	_	

- I. Se os afastamentos verticais das figuras "b" e "c" não puderem ser mantidos, exige-se os afastamentos horizontais da figura "d";
- II. Se o afastamento vertical entre os condutores e as sacadas, terraços ou janelas for igual ou maior do que as dimensões das figuras "b" e "c", não se exige o afastamento horizontal da borda da sacada, terraço ou janela figura "d", porém o afastamento da figura "e" deve ser mantido.

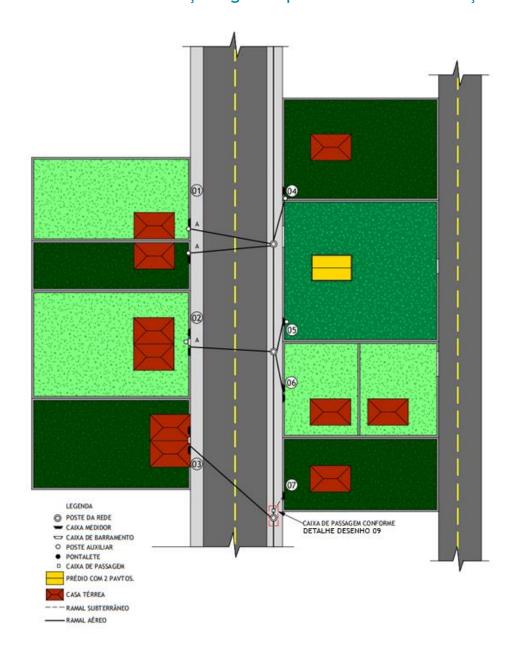
DESENHO 02 - Afastamentos mínimos entre condutores e edificações - Rede compacta

Afastamento mínimo							
	Primário			Somente secundário			
Figura	15,0 kV		24,2 / 36,2 kV		Sometile securidation		
	Α	С	А	С	В	D	
Α	1.000	3.000	1.200	3.200	500	2.500	
В	-	1.000	-	1.200	-	500	
С	-	3.000	-	3.200	-	2.500	
D	1.500	-	1.700	-	1.200	-	
E	1.000	-	1.200	-	1.000	-	
F	1.000	-	1.200	-	1.000	-	
G	1.500	-	1.700	-	1.200	-	


- I. Se os afastamentos verticais das figuras "b" e "c" não puderem ser mantidos, exige-se os afastamentos horizontais da figura "d";
- II. Se o afastamento vertical entre os condutores e as sacadas, terraços ou janelas for igual ou maior do que as dimensões das figuras "b" e "c", não se exige o afastamento horizontal da borda da sacada, terraço ou janela figura "d", porém o afastamento da figura "e" deve ser mantido.

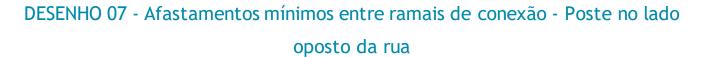

- I. Todo eletroduto embutido no solo ou na parede deve ser de aço galvanizado;
- II. A distância mínima para instalação do olhal ou armação secundária é 3,5 metros, sendo limitada a 7,0 metros, conforme o caso.
- III. As alturas de segurança devem ser seguidas conforme a Tabela 27.

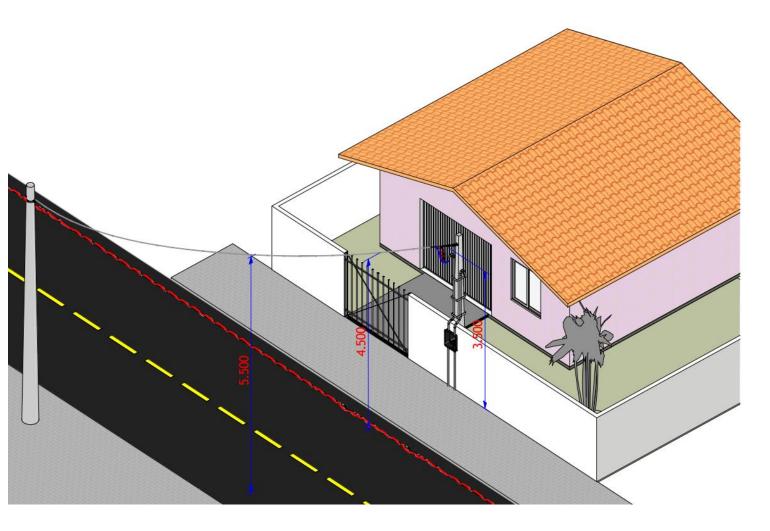
DESENHO 04 - Condições gerais para entrada de serviço - situação da edificação para a escolha do padrão


- O padrão para atendimento às situações aqui mostradas deverá ser escolhido conforme representações nos desenhos de entrada de serviço com medição;
- II. Para alturas dos ramais de entrada, ver DESENHO 07 e DESENHO 08.

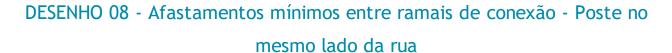
DESENHO 05 - Condições gerais para entrada de serviço

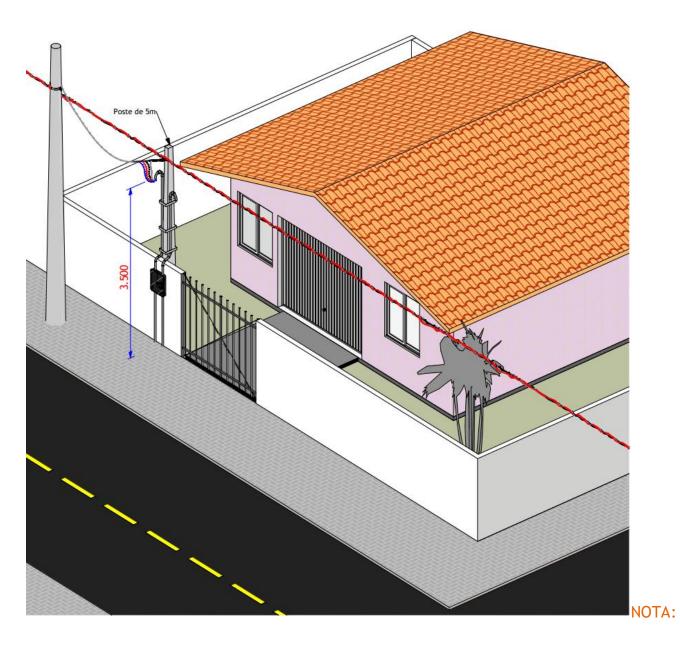
- I. O prédio tem altura suficiente e está no alinhamento da via pública:
- a) Ligar diretamente à rede, medição na parede frontal;
- b) Usar poste no alinhamento da via pública, medição no poste, muro ou mureta.
- II. O prédio não tem altura suficiente e está no alinhamento da via pública:
 - a) Usar pontalete, medição na parede frontal;
 - b) Usar poste no alinhamento da via pública, medição no poste, muro ou mureta.
- III. Prédio ocupando toda a área do terreno:
 - a) Caso o prédio tenha altura suficiente, ligar diretamente a rede na parede frontal;
 - b) Caso o prédio não tenha altura suficiente, usar pontalete, medição na parede frontal.
- IV. O prédio está fora do alinhamento da via pública:
 - a) Usar poste auxiliar no limite com a via pública.
- V. Vários prédios no mesmo lote, não fazendo frente para outra rua:
 - a) Usar poste na entrada comum no limite da via pública, medição no muro ou mureta.

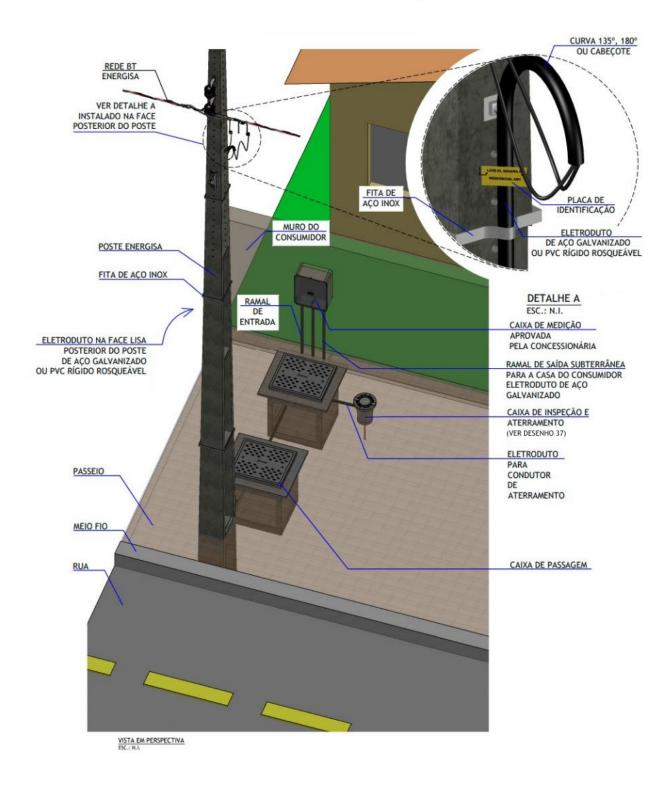

Obs.: Sempre deverá manter o padrão de apenas uma entrada de corrente.



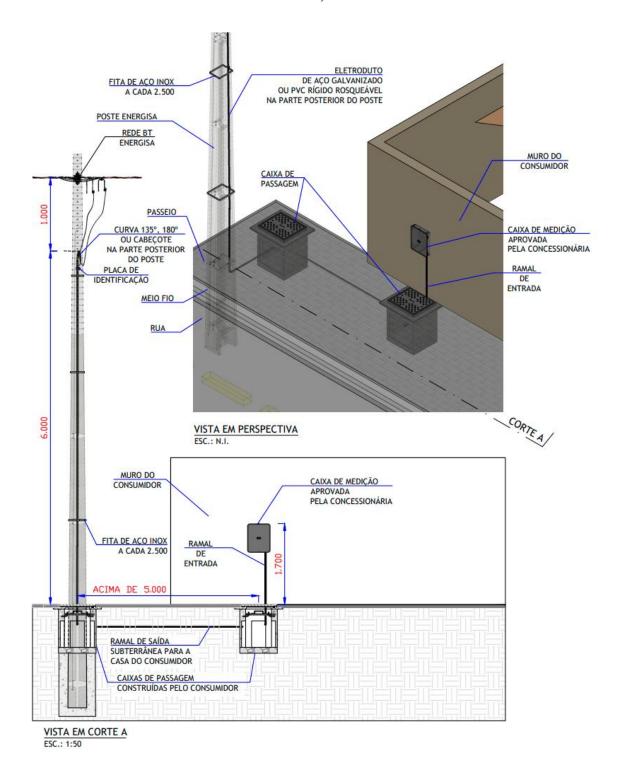
DESENHO 06 - Condições gerais para entrada de serviço

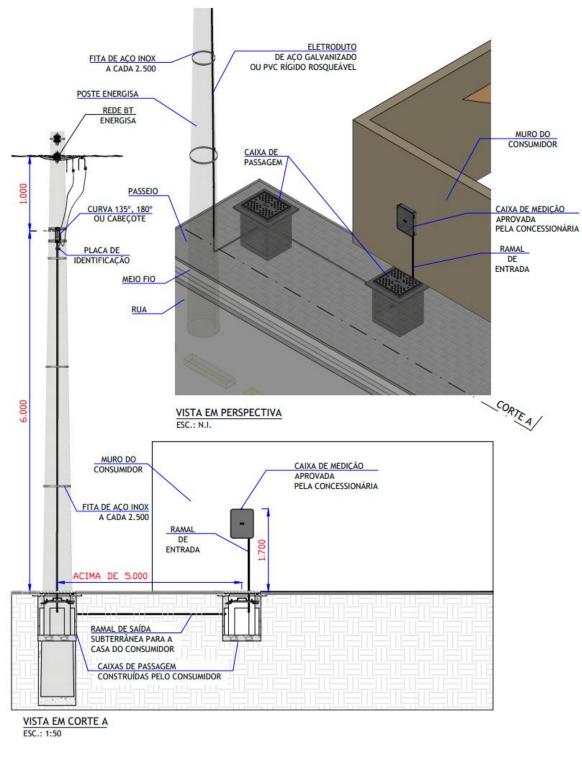

- I. Edifícios geminados em lotes diferentes fora do alinhamento da via pública:
 - a) Usar postes individuais no alinhamento da via pública, medição no muro ou mureta.
- II. Prédios geminados no mesmo lote fora do alinhamento da via pública:
 - a) Usar poste no alinhamento da via pública, medição no muro ou mureta.


- III. Prédios geminados no mesmo lote, no alinhamento da via pública.
- IV. O prédio está fora do alinhamento da via pública, porém o limite de propriedade está a mais de 40 metros do poste da rede.
 - a) Se o limite do terreno estiver até 40 metros, do último poste da rede, usar poste no alinhamento da via pública, medição no muro ou mureta.
 - b) Caso contrário, consultar a concessionária.
- V. Dois atendimentos em prédios constituídos de térreo e sobrado, cujos acessos são independentes, estando fora do alinhamento da via pública. A usar poste auxiliar no limite da via pública, medição no muro ou mureta.
- VI. Não será permitido a ligação de um prédio de fundos, quando os lotes pertencerem a diferente proprietário, ou se ele der frente para outra rua.
- VII. Ramal de conexão subterrâneo, conforme DESENHO 09 e DESENHO 10.


- I. As alturas mínimas indicadas no desenho estão em mm;
- II. A altura de segurança dos condutores em relação ao solo deve seguir o estabelecido na Tabela 27 apresentada nesta norma, conforme a NBR 15992.

I. A altura mínima indicada no desenho está em mm.


DESENHO 09 - Entrada de serviço subterrânea



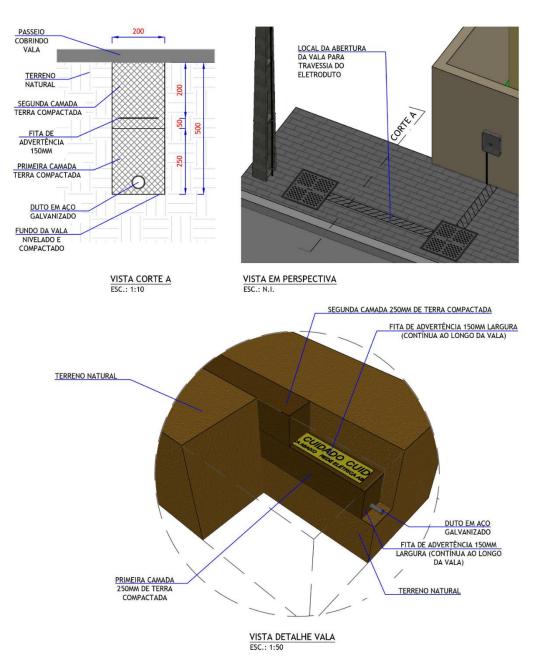
- O ramal de entrada subterrâneo será construído conforme posturas municipais e com autorização da concessionária.
- II. A entrada subterrânea deverá derivar diretamente da rede de distribuição da concessionária.
- III. A tubulação do ramal subterrâneo não deverá cortar terrenos de terceiros, passar sob área construída e/ou cruzar vias públicas de rolamento.
- IV. Fica vedada a passagem sob vias públicas ou propriedades de terceiros, exceto calçadas.
- V. Apresentar declaração de compromisso/ramal subterrâneo.
- VI. A placa de identificação deve ser em alumínio 100 x 50 mm no mínimo, contendo quadra, lote ou nome do empreendimento, fixada no eletroduto com arame de aço galvanizado.
- VII. As especificações técnicas da fita em aço inox estão na ETU-176.
- VIII. Alternativamente, para firme fixação do eletroduto junto ao poste, será admitida o uso de amarrações, tais como:
 - Fitas de aço carbono zincadas a quente;
 - Cintas de aço inox ou de aço carbono zincadas a quente;
 - Liga de alumínio;
 - Arame de aço galvanizado (14 BWG); ou
 - Fio de cobre (2,5 mm²).

DESENHO 10 - Detalhe ramal de entrada subterrâneo

POSTE DUPLO T - SEÇÃO RETANGULAR

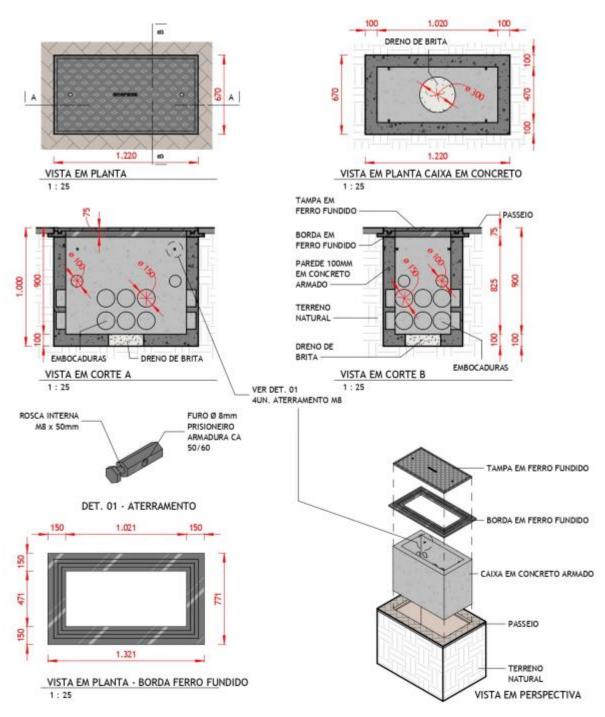
POSTE SC - SEÇÃO CIRCULAR

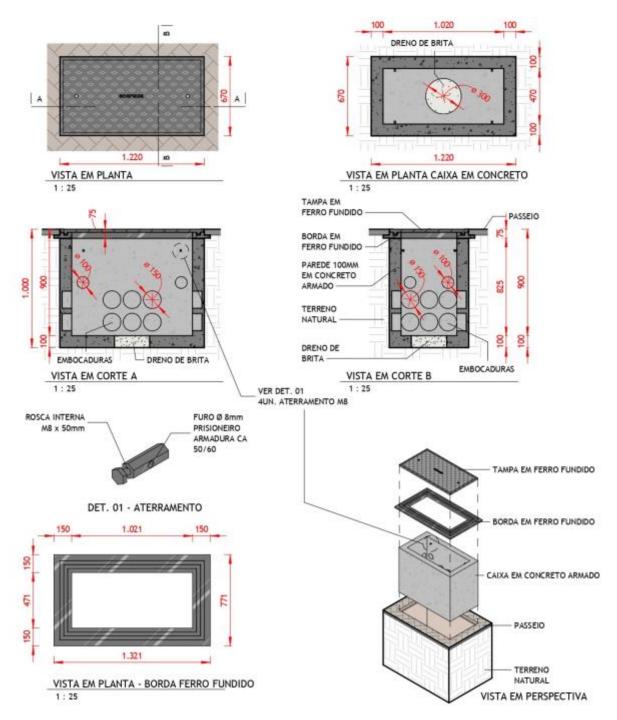
Legenda:


- 1) Cabeçote para eletroduto ou curva;
- 2) Eletroduto de aço galvanizado;

- 3) Fita aço inox;
- 4) Cabo ramal de entrada;
- 5) Identificação da UC;
- 6) Curva para eletroduto de aço galvanizado;
- 7) Luva para eletroduto de aço galvanizado;
- 8) Caixa de passagem CP-01 ou CP-02 de concreto com tampa;
- 9) Poste de concreto da concessionária.

- I. Deverá ser deixado uma sobra de cabo, no mínimo de 2,0 m, dentro da caixa de passagem.
- II. O eletroduto de descida deverá ser fixado ao poste com fita de aço inoxidável
- III. O eletroduto de descida deverá ser identificado através da placa de identificação da edificação.
- IV. O eletroduto de descida dos cabos de alimentação deve ficar preso ao poste no lado oposto ao fluxo de veículos na rua, avenida etc.
- V. A caixa de passagem poderá ser feita em qualquer direção desde que não esteja dentro do arruamento ou terreno de terceiros.
- VI. A caixa deverá ficar ao raio mínimo de 0,50 cm do poste e dentro do passeio.
- VII. Fica vedada a passagem sob vias públicas ou propriedades de terceiros, exceto calçadas.
- VIII. O eletroduto de entrada deverá ser fixado ao poste em posição contrária ao fluxo de veículos
- IX. A segunda caixa de passagem é obrigatória para distância maior que 20,0 metros;
- X. As especificações técnicas da fita em aço inox estão na ETU-176.
- XI. Alternativamente, para firme fixação do eletroduto junto ao poste, será admitida o uso de amarrações, tais como:
 - Fitas de aço carbono zincadas a quente;

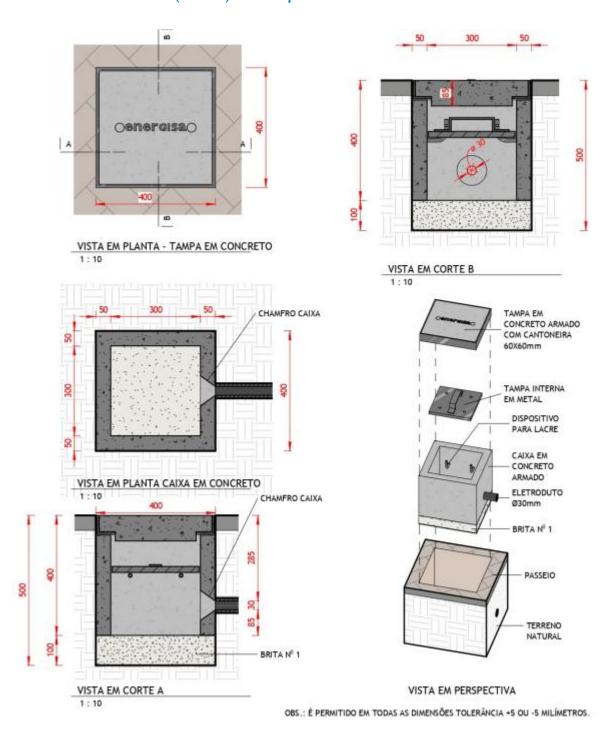

- Cintas de aço inox ou de aço carbono zincadas a quente;
- Liga de alumínio;
- Arame de aço galvanizado (14 BWG); ou
- Fio de cobre (2,5 mm²).


- I. Obrigatório para ramais subterrâneos de baixa tensão de energia não medida, instalados em travessias de vias de circulação particular interna ou na calçada/passeio público.
- II. Deve ser utilizada faixa de advertência, que pode ser de PVC na cor amarela, com alerta na cor vermelha. Utilizar FCK = 76 kgf/cm para envelope de concreto, para garantir a segurança.

- III. Ramal subterrâneo para baixa tensão não deve atravessar via pública e/ou terreno de terceiros.
- IV. Para casos de travessia de vias particulares, o duto deverá ser envelopado com concreto.

OBS.: É PERMITIDO EM TODAS AS DIMENSÕES TOLERÂNCIA +5 OU -5 MILÍMETROS.

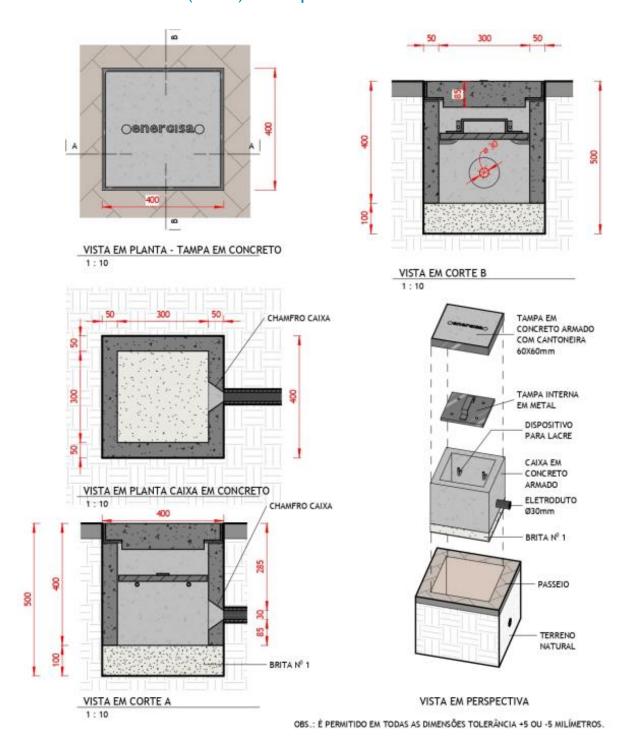
- I. Esta caixa deverá ser usada nas extremidades de cada trecho de banco de dutos de circuito secundário e/ou em locais onde há mudança de direção do banco de dutos.
- II. O anel será de concreto pré-moldado. Permite-se sua construção em concreto fundido no local ou em alvenaria, desde que mantenha as dimensões internas indicadas acima.
- III. O tampão será de ferro fundido ou concreto armado com alça retrátil.
- IV. Não poderá ser instalado onde exista tráfego de veículos. (entrada de garagem etc.).
- V. A borda do eletroduto deverá ficar rente a parede interna da caixa. (não deve conter quina viva).
- VI. O fundo da caixa deve possuir dreno, constituído de ferro.
- VII. Deverá ser deixado uma sobra de 2,0 m de cabo dentro da caixa.
- VIII. As caixas devem ter tampa de concreto ou ferro fundido.
- IX. As tampas das caixas devem estar com sua face superior no mesmo nível do piso.



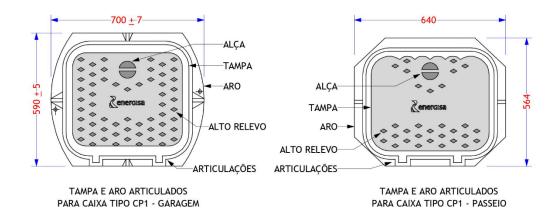
OBS.: É PERMITIDO EM TODAS AS DIMENSÕES TOLERÂNCIA +5 OU -5 MILÍMETROS.

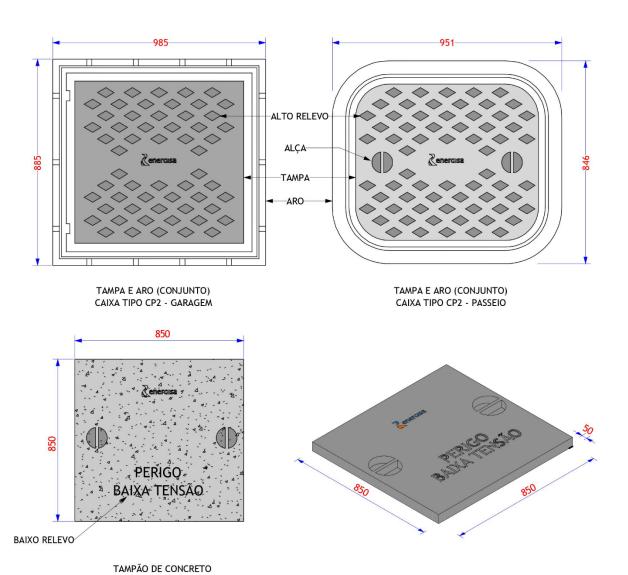
I. Esta caixa deverá ser usada nas extremidades de cada trecho de banco de dutos de circuito secundário e/ou em locais onde há mudança de direção do banco de dutos.

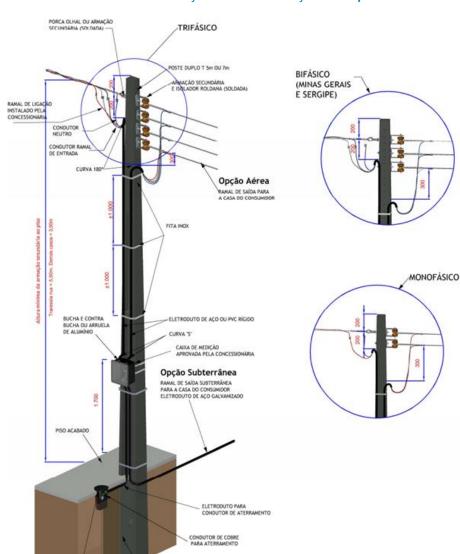
- II. O anel será de concreto pré-moldado. Permite-se sua construção em concreto fundido no local ou em alvenaria, desde que mantenha as dimensões internas indicadas acima.
- III. O tampão será de ferro fundido ou concreto armado com alça retrátil.
- IV. Não poderá ser instalado onde exista tráfego de veículos. (entrada de garagem etc.).
- V. A borda do eletroduto deverá ficar rente a parede interna da caixa. (não deve conter quina viva).
- VI. O fundo da caixa deve possuir dreno, constituído de ferro.
- VII. Deverá ser deixado uma sobra de 2,0 m de cabo dentro da caixa.
- VIII. As caixas devem ter tampa de concreto ou ferro fundido.
- IX. As tampas das caixas devem estar com sua face superior no mesmo nível do piso.


DESENHO 14 - Ramal de entrada subterrâneo - Caixa de Ramal em Baixa Tensão (CRBT) - Tampa em Concreto Armado

I. As derivações dos ramais de conexões para ligações dos consumidores devem ser feitas nas caixas de passagem CRBT (Caixa de ramal de baixa tensão), instaladas nas calçadas.


- II. O anel será de concreto pré-moldado. Permite-se sua construção em concreto fundido no local ou em alvenaria, desde que mantenha as dimensões internas indicadas acima.
- III. O tampão será de ferro fundido ou concreto armado com alça retrátil.
- IV. Esta caixa também deverá ser construída pelo consumidor.
- V. Não poderá ser instalado onde exista tráfego de veículos (entrada de garagem etc.)
- VI. A borda do eletroduto deverá ficar rente a parede interna da caixa. (não deve conter quina viva).
- VII. O fundo da caixa deve possuir dreno, constituído de furo e concreto.
- VIII. Deverá ser deixada uma sobra de 2,0 m de cabo dentro da caixa.
- IX. As caixas devem ter tampa de concreto ou ferro fundido.
- X. As tampas das caixas devem estar com sua face superior no mesmo nível do piso.

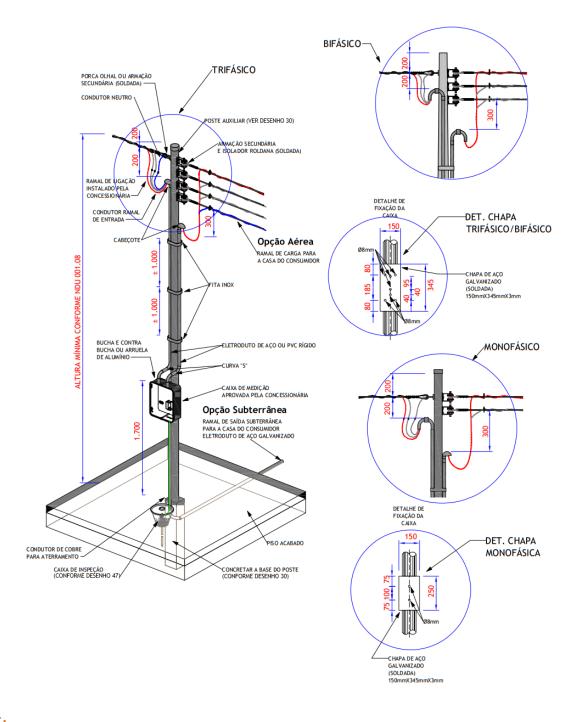

DESENHO 15 - Ramal de entrada subterrâneo - Caixa de Ramal em Baixa Tensão (CRBT) - Tampa em Concreto Armado


- I. As derivações dos ramais de conexões para ligações dos consumidores devem ser feitas nas caixas de passagem CRBT (Caixa de ramal de baixa tensão), instaladas nas calçadas.
- II. O anel será de concreto pré-moldado. Permite-se sua construção em concreto fundido no local ou em alvenaria, desde que mantenha as dimensões internas indicadas acima.
- III. O tampão será de ferro fundido ou concreto armado com alça retrátil.
- IV. Esta caixa também deverá ser construída pelo consumidor.
- V. Não poderá ser instalado onde exista tráfego de veículos (entrada de garagem etc.)
- VI. A borda do eletroduto deverá ficar rente a parede interna da caixa. (não deve conter quina viva).
- VII. O fundo da caixa deve possuir dreno, constituído de furo e concreto.
- VIII. Deverá ser deixada uma sobra de 2,0 m de cabo dentro da caixa.
- IX. As caixas devem ter tampa de concreto ou ferro fundido.
- X. As tampas das caixas devem estar com sua face superior no mesmo nível do piso.

DESENHO 16 - Tampas com aros para Caixa de Passagem

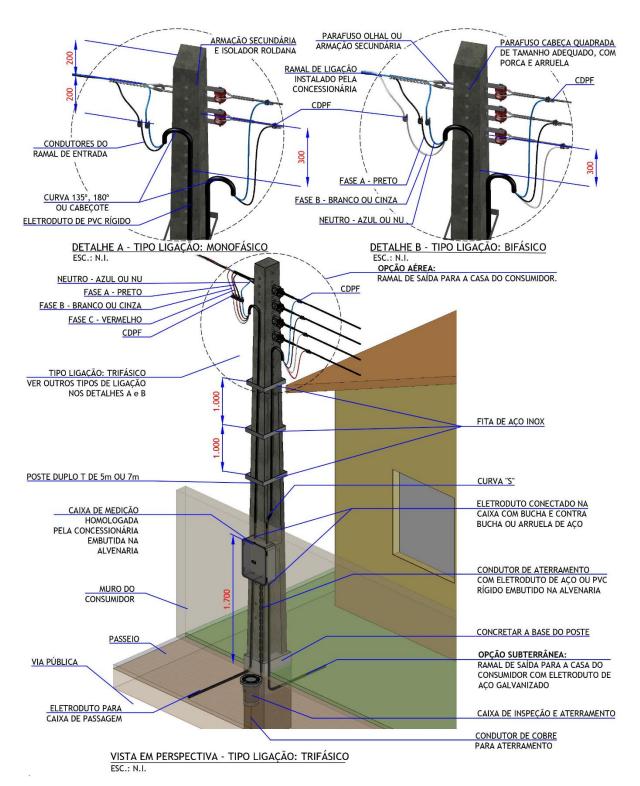
- O sistema de articulação da tampa (dobradiça da caixa CP-02) deve ser do tipo antirroubo, não permitindo que a tampa seja separada do aro após fabricação;
- II. O encaixe da tampa no aro deve ser estável, seja de fabricação ou por usinagem;
- III. A tampa deve apresentar em sua superfície interna a marca do fabricante.
- IV. A logo do Grupo Energisa na tampa não é item obrigatório, mas na caixa deve ser sinalizada a mensagem de alerta/perigo.

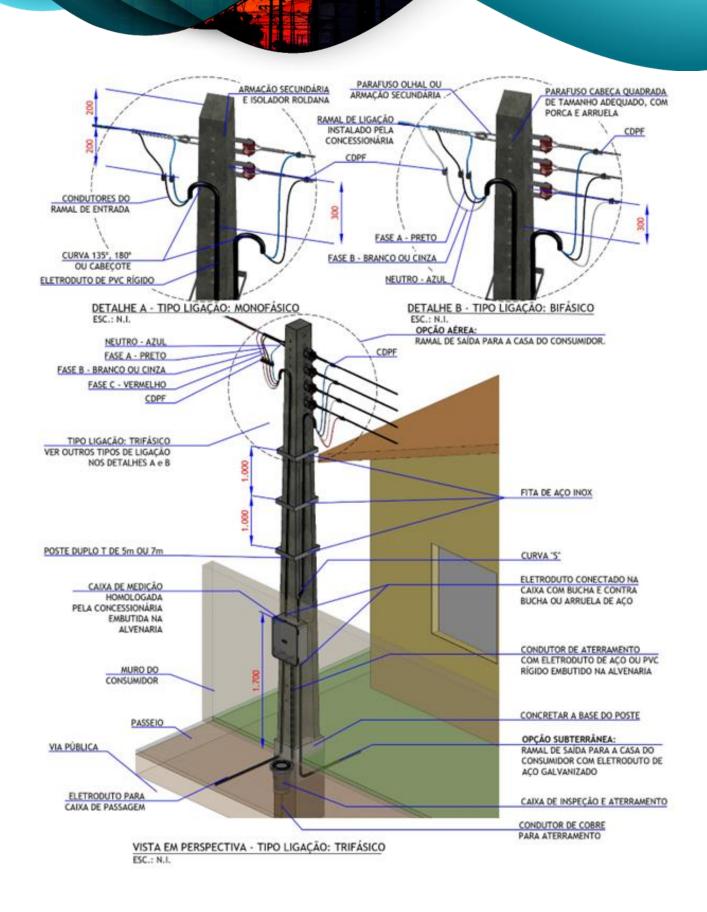
DESENHO 17 - Entrada de serviço com medição no poste - Poste duplo T


I. O poste de 5,0 m deverá ser engastado numa profundidade de 1,10 m.

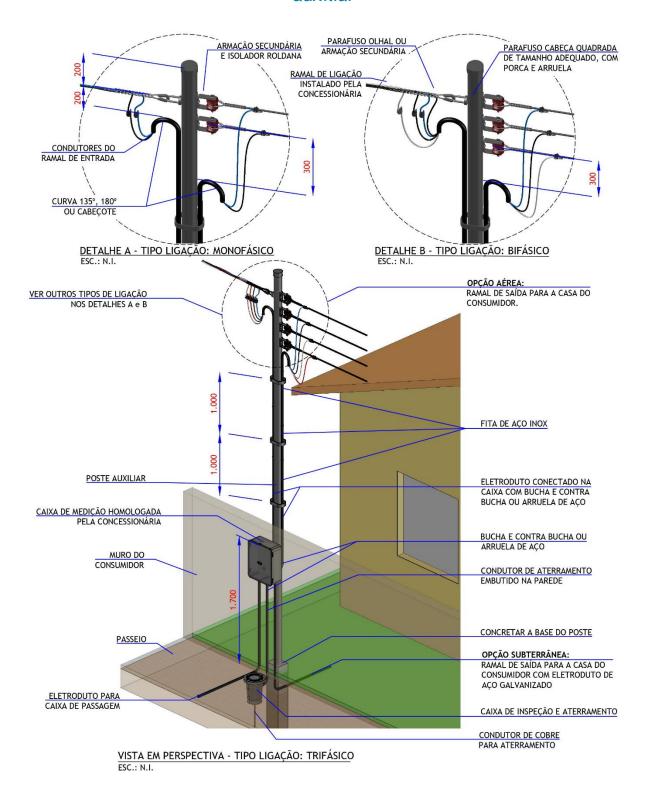
CONCRETAR A BASE DO POSTE (CONFORME DESENHO 33)

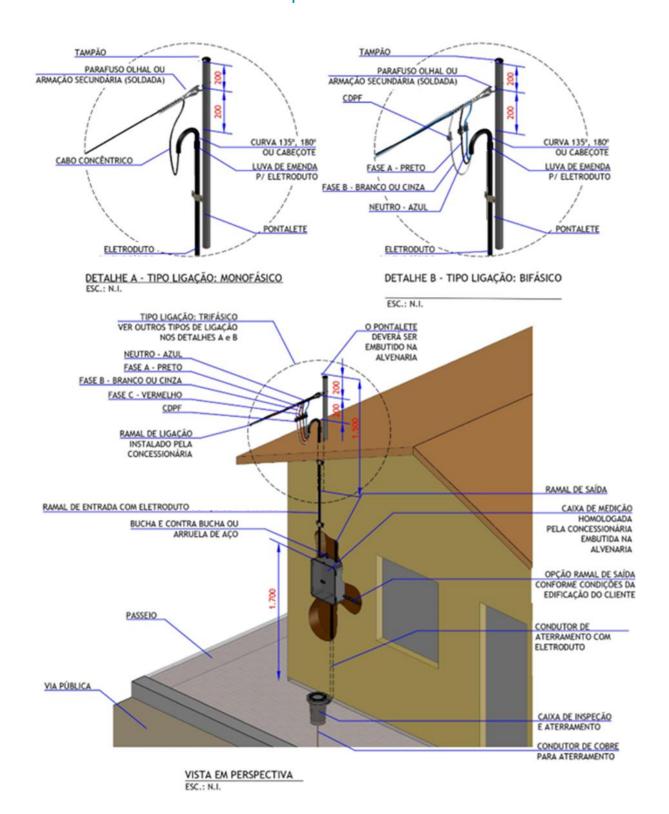
CAIXA DE INSPEÇÃO (CONFORME DESENHO 47)


- II. O poste de 7,0 m deverá ser engastado numa profundidade de 1,30 m.
- III. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.

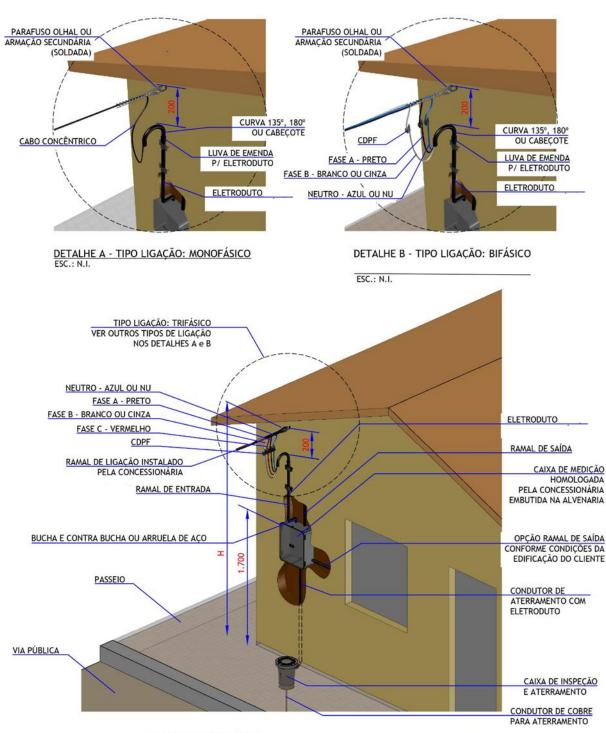


- I. Todo eletroduto embutido no solo ou na parede deve ser de aço galvanizado;
- II. O poste auxiliar de tubo galvanizado a quente deve ser aterrado.
- III. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.


DESENHO 19 - Entrada de serviço com medição em muro ou mureta - Poste duplo T

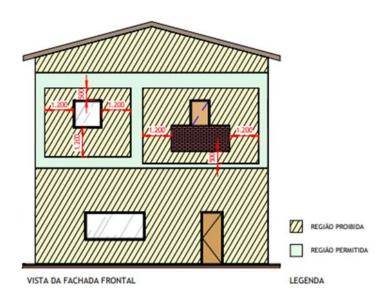

- I. Todo eletroduto embutido no solo ou na parede deve ser de aço galvanizado.
- II. O poste auxiliar de tubo galvanizado a quente deve ser aterrado.
- III. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.

DESENHO 20 - Entrada de serviço com medição em muro ou mureta - Poste auxiliar


- I. Todo eletroduto embutido no solo ou na parede deve ser de aço galvanizado;
- II. O poste auxiliar de tubo galvanizado a quente deve ser aterrado;
- III. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre;
- IV. Não é permitido a construção e ligação do padrão de entrada pré-moldado ou em placas de concreto, sendo construído em alvenaria e instalado posteriormente todo acabado no local;
- V. Não é permitido pontalete em muro.

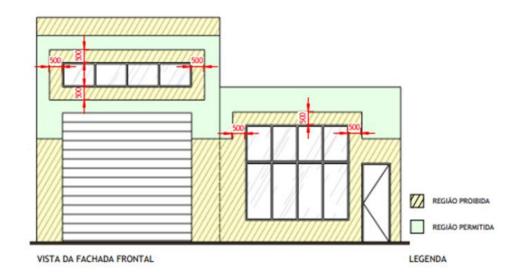
DESENHO 21 - Entrada de serviço com medição na fachada - Instalação de pontalete

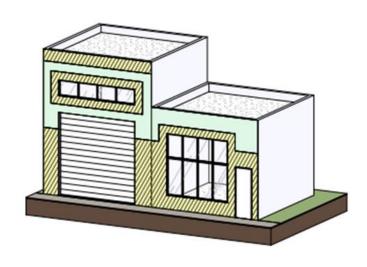
- I. Este padrão só poderá ser utilizado em casas onde a fachada encontra-se no limite da via pública.
- II. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.
- III. Todo eletroduto embutido no solo ou na parede deve ser de aço galvanizado.


DESENHO 22 - Entrada de serviço com medição na fachada - Instalação em parede

VISTA EM PERSPECTIVA

- I. Este padrão só poderá ser utilizado em casas onde a fachada encontra-se no limite da via pública.
- II. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.
- III. Todo eletroduto embutido no solo ou na parede deve ser de aço galvanizado.

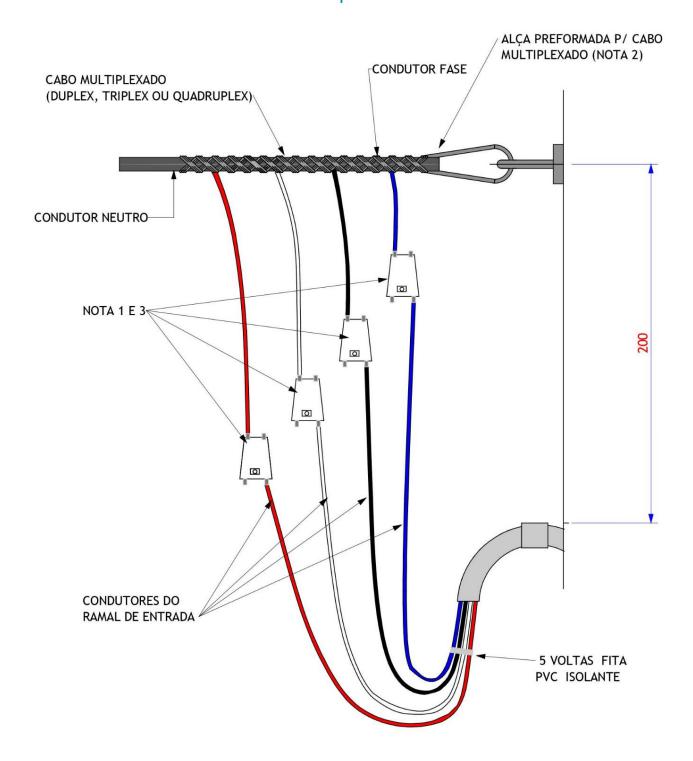


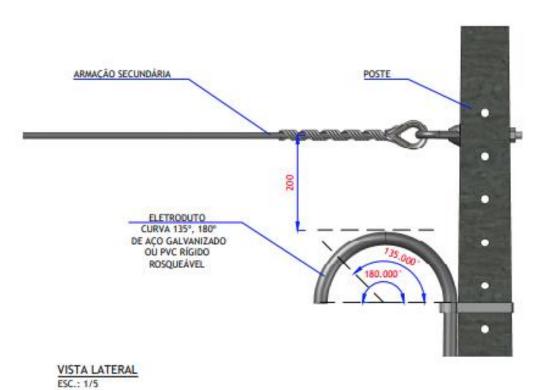


- I. Este padrão só poderá ser utilizado em casas onde a fachada encontra-se no limite da via pública.
- II. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.
- III. A distância e os condutores e o solo devem atender à Tabela 27 e DESENHO 01.



- I. Este padrão só poderá ser utilizado em casas onde a fachada encontra-se no limite da via pública.
- II. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.
- III. A distância e os condutores e o solo devem atender à Tabela 27 e DESENHO 01.

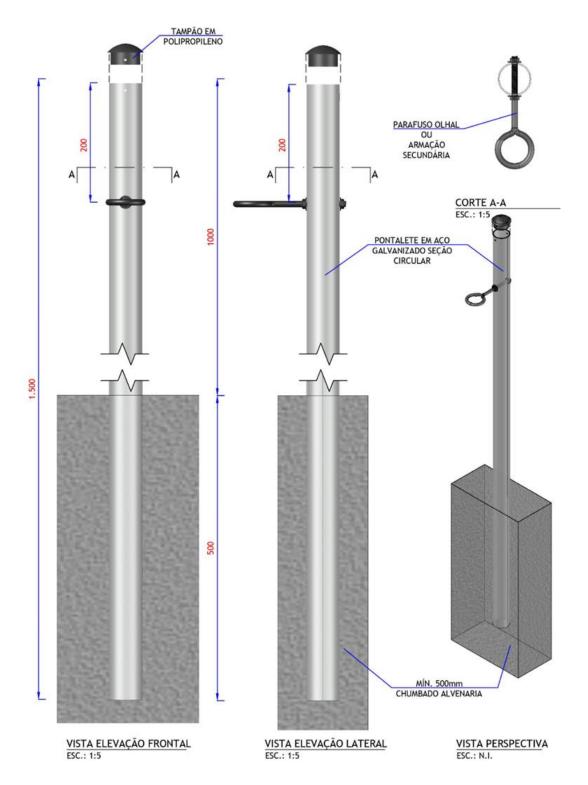

VISTA EM PERSPECTIVA



- I. Este padrão só poderá ser utilizado em casas onde a fachada encontra-se no limite da via pública.
- II. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.
- III. A distância e os condutores e o solo devem atender à Tabela 27 e DESENHO 01.

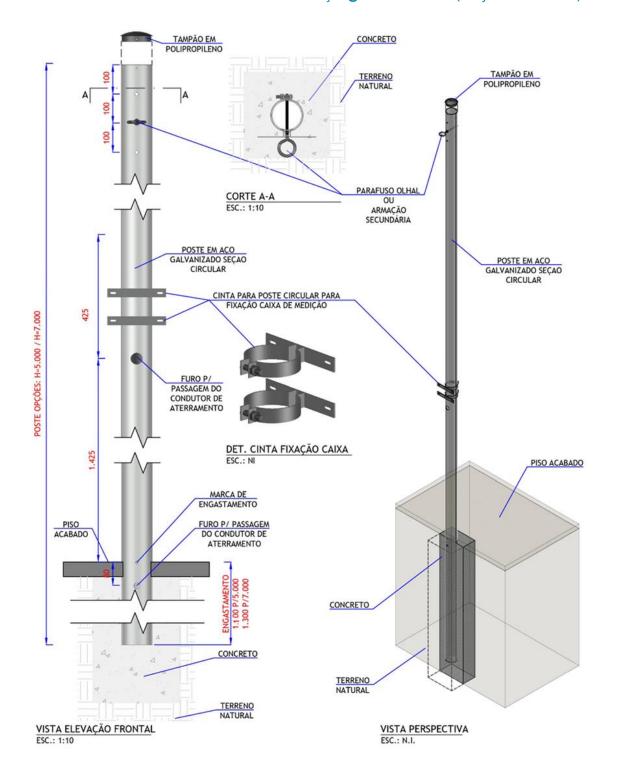
DESENHO 26 - Amarração e conexão do ramal de conexão aéreo - Cabo multiplexado

- I. As conexões devem ser isoladas através de fita auto fusão e recoberta com fita isolante em PVC.
- II. A alça pré-formada deve ser aplicada sobre o condutor neutro.
- III. Utilizar conector perfurante adequado nas conexões de cabos com classe de encordoamento2 e 5.
- IV. As conexões mostradas neste desenho se aplicam apenas a cabos multiplexados.



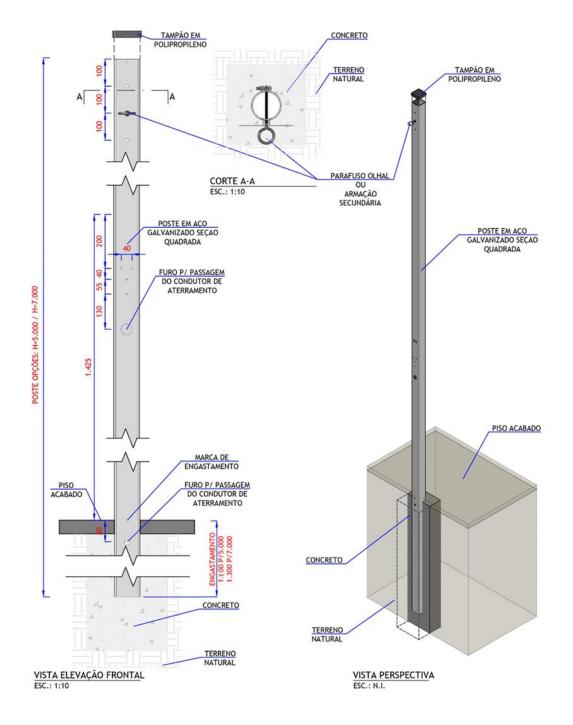
VISTA EM PERSPECTIVA ESC.: N.I.

- A curva de entrada pode também ser executada no próprio eletroduto por meio de máquina apropriada, observando-se o ângulo de 135° ou 45° e os valores dos raios de curvatura, raio indicado;
- II. As curvas de entrada não devem apresentar reaberturas, achatamentos, rachaduras ou qualquer outro defeito que prejudique a sua aparência ou os condutores.



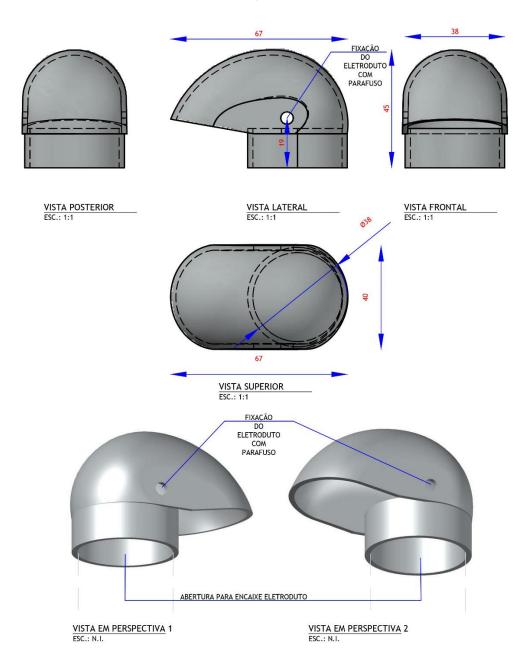
Tipo de poste auxiliar	Comprimento Máximo	Esforço mecânico	Diâmetro	Diâmetro	Espessura (E)
aditital	(mm)	(daN)	(mm)	(Pol)	(mm)
Pontalete seção	1,500	75	76	3	2,00
circular	1.300	/ 3	70	4	2,00

- I. Material tubo de ferro galvanizado a quente, sem rosca, sem emenda e sem costuras.
- II. O poste auxiliar de tubo galvanizado a quente deve ser aterrado;
- III. Todo poste deverá ter obrigatoriamente as seguintes identificações em baixo relevo: fabricante, seção topo/base, comprimento, resistência mecânica, mês, ano e lote de fabricação.
- IV. No aterramento do poste auxiliar podem ser empregados abraçadeiras circular ou retangular acompanhadas de conectores *split bolt*, conforme detalhes acima;
- V. É possível utilizar um pontalete de diâmetro diferente ao especificado na tabela acima, desde que possua no mínimo o mesmo esforço mecânico de 75 daN.


DESENHO 29 - Poste auxiliar em aço galvanizado (seção circular)

Tipo de poste auxiliar	Comprimento	Esforço mecânico	Diâmetro	Diâmetro	Espessura (E)
	(mm)	(daN)	(mm)	(Pol)	(mm)
	5.000	90	101,6	4	3,00
Poste seção circular	7.000	90			
	7.000	200	114,3	4 ½	4,25

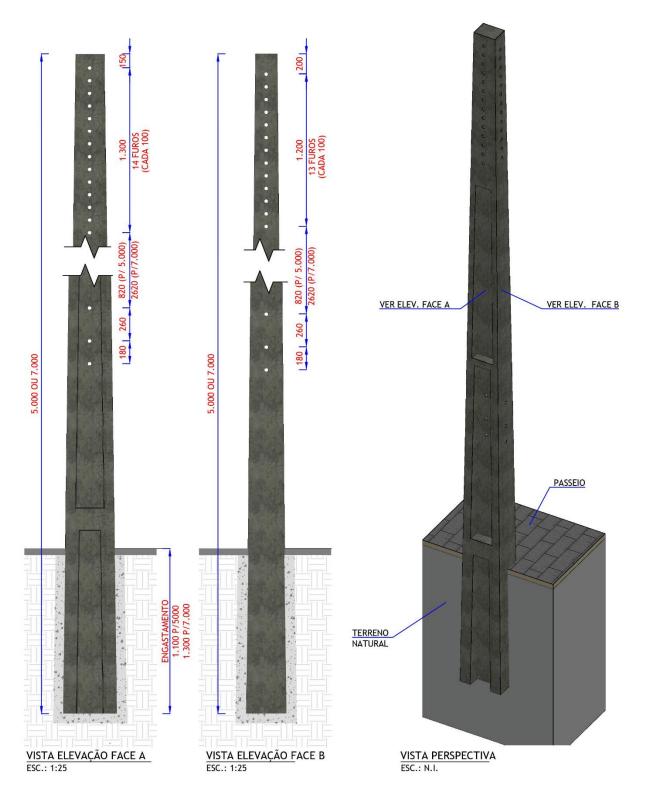
- I. Material tubo de ferro galvanizado a quente, sem rosca, sem emenda e sem costuras.
- II. O poste auxiliar de tubo galvanizado a quente deve ser aterrado.
- III. Todo poste deverá ter obrigatoriamente as seguintes identificações em baixo relevo: fabricante, seção topo/base, comprimento, resistência mecânica, mês, ano e lote de fabricação.
- IV. No aterramento do poste auxiliar podem ser empregados abraçadeiras circular ou retangular acompanhadas de conectores *split bolt*, conforme detalhes acima.


DESENHO 30 - Poste auxiliar em aço galvanizado (seção quadrada)

Tipo de poste auxiliar	Comprimento	Esforço mecânico	Diâmetro	Espessura (E)	
	(mm)	(daN)	(mm)	(mm)	
	5.000	90	80×80	3,00	
Poste seção quadrada	7.000	70		3,00	
	7.000	200	90x90	4,25	

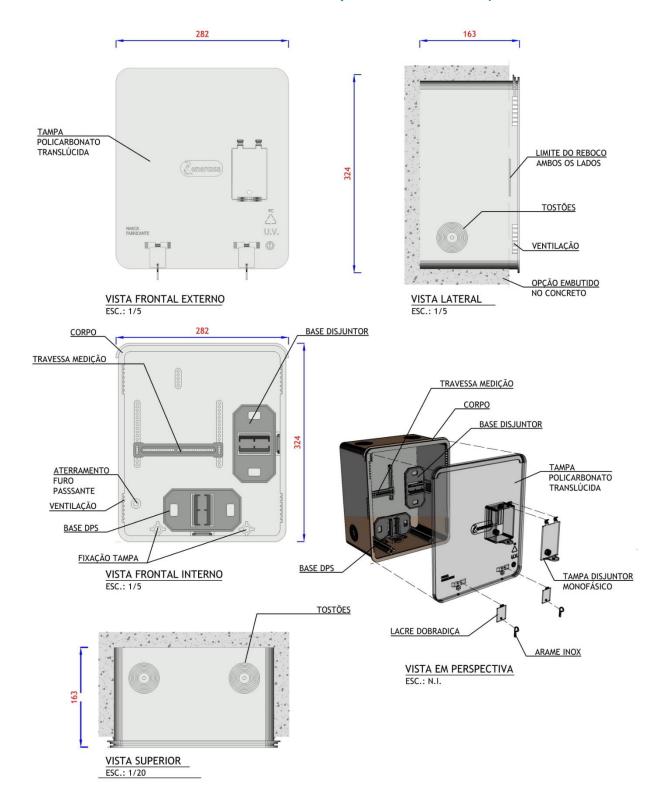
- I. Material tubo de ferro galvanizado a quente, sem rosca, sem emenda e sem costuras.
- II. O poste auxiliar de tubo galvanizado a quente deve ser aterrado.
- III. Todo poste deverá ter obrigatoriamente as seguintes identificações em baixo relevo: fabricante, seção topo/base, comprimento, resistência mecânica, mês, ano e lote de fabricação.
- IV. No aterramento do poste auxiliar podem ser empregados abraçadeiras circular ou retangular acompanhadas de conectores *split bolt*, conforme detalhes acima.

DESENHO 31 - Cabeçote para eletroduto

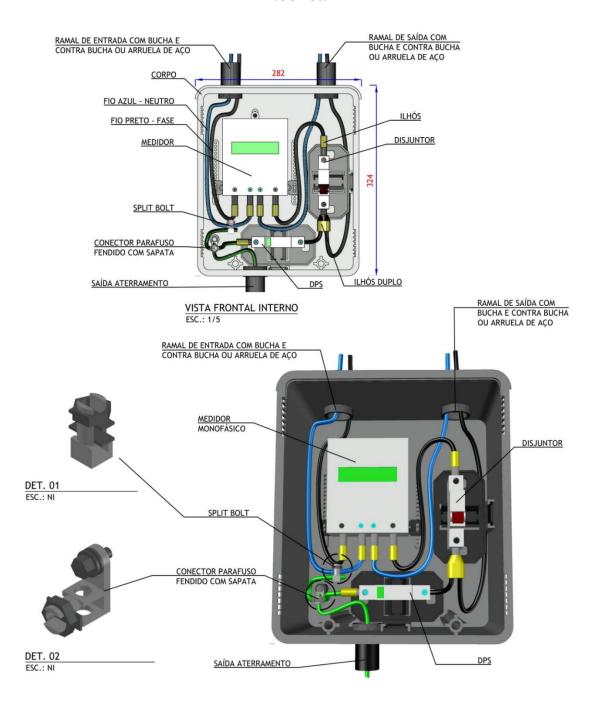

		Dimensional					Peso		
Item	Eletroduto DN		A (mín.)	ØB	ØC	D (Parafuso)	ØE	R (mín.)	aprox.
	(mm)	(pol)			(r	mm)			(kg)
1	20	3/4		31 ± 2	25 ± 2	AAE		55	0,2
2	25	1	20	38 ± 2	31 ± 2	M5	5,5	55	0,3
3	40	1.1/2		54 ± 3	44 ± 3	110	0 E	O.E.	0,5
4	50	2		66 ± 3	55 ± 3	M8	8,5	85	0,7
5	65	2.1/2	50	81 ± 4	67 ± 4			125	1,2
6	80	3	55	97 ± 4	62 ± 4	M10	10,5	125	1,7
7	100	4		125 ± 6	107 ± 6			150	2,2

- a) Peça 1: Alumínio ou liga de alumínio ou PVC.
- b) Peça 2: Alumínio ou liga de alumínio ou PVC.
- c) Parafusos, porca e arruela lisa: Alumínio duro anodizado.
- d) Arruela de pressão: Aço zincado.
- 2) Acabamento

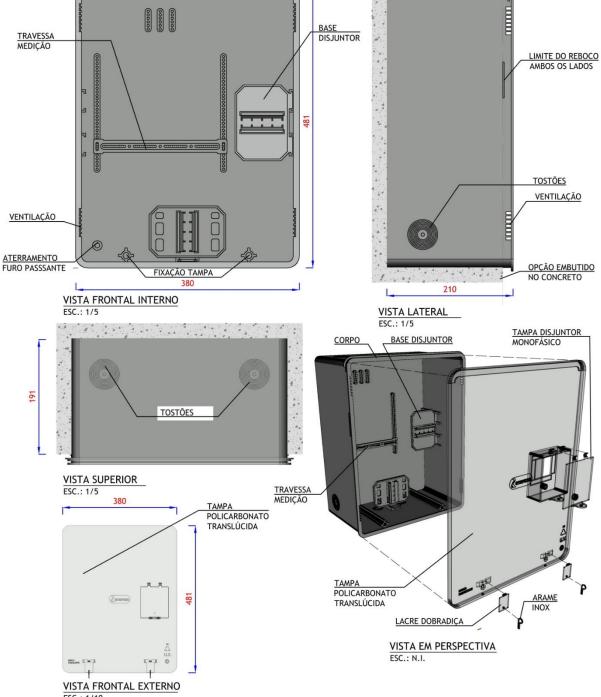
Superfícies lisas, isentas de rebarbas. Quando usado PVC, este deverá ser de cor escura.


- I. Marcas legíveis:
 - a) Do fabricante;
 - b) Diâmetro nominal.
- II. Espessura mínima das peças:
 - a) Alumínio: 5,0 mm;
 - b) PVC: 7,0 mm.
- III. Fornece com os parafusos indicados no desenho.
- IV. O parafuso deverá ter rosca total e comprimento adequado para a fixação do cabeçote no eletroduto.
- V. Os pesos são informativos. Não são objeto de inspeção.

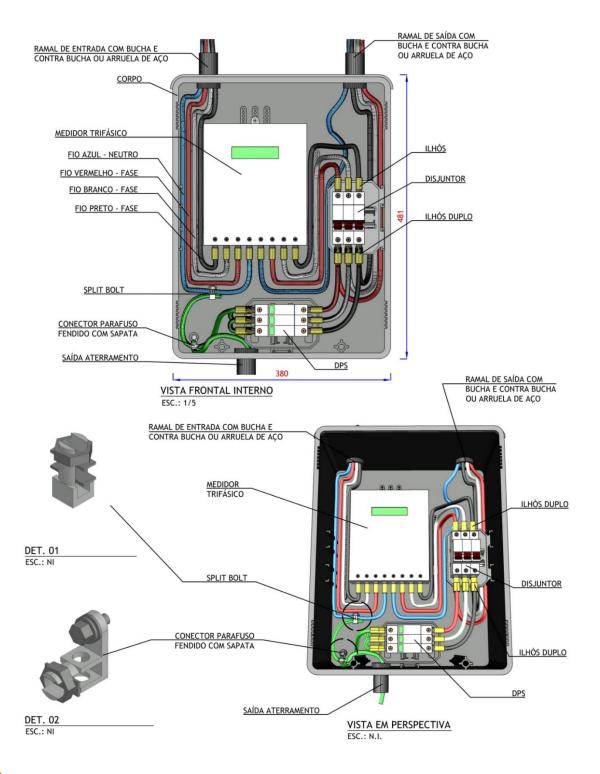
DESENHO 32 - Poste auxiliar em concreto (duplo T)

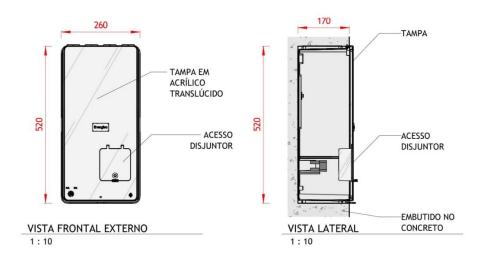


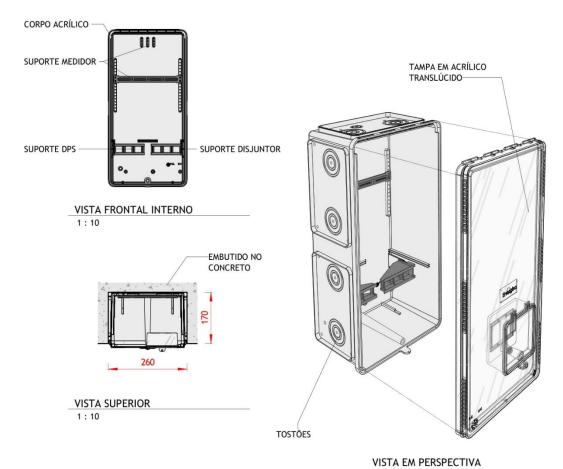
I. Os furos dos postes são de Ø 19mm.


DESENHO 34 - Caixa de Medição Individual - Tipo CMI-01 - Esquema de ligação Elétrica

VISTA EM PERSPECTIVA ESC.: N.I.

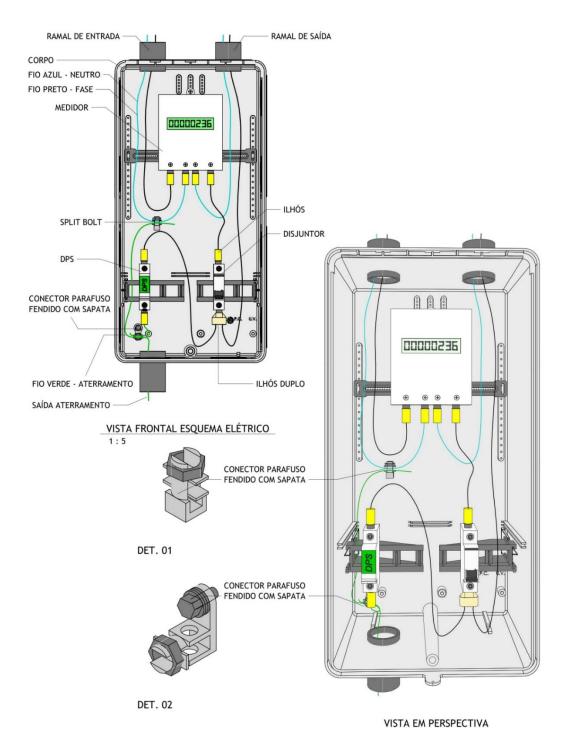

NOTA:

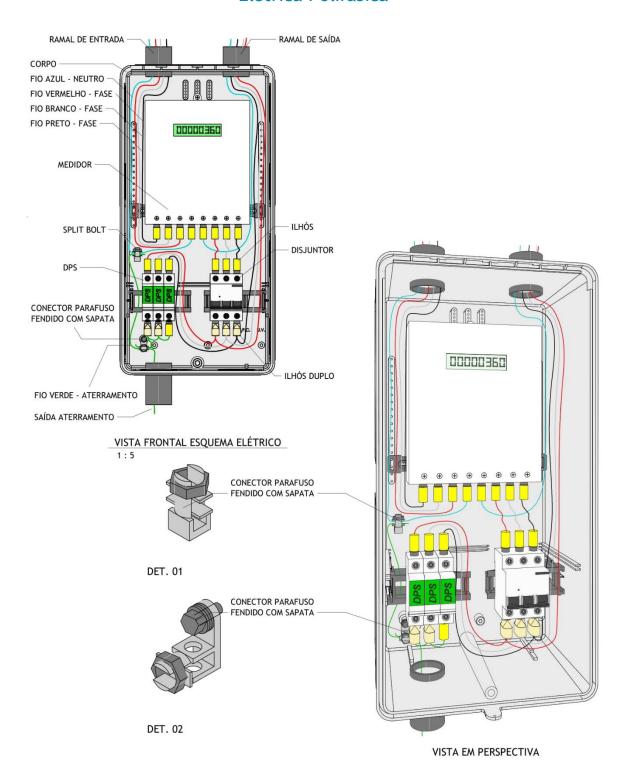



CORPO

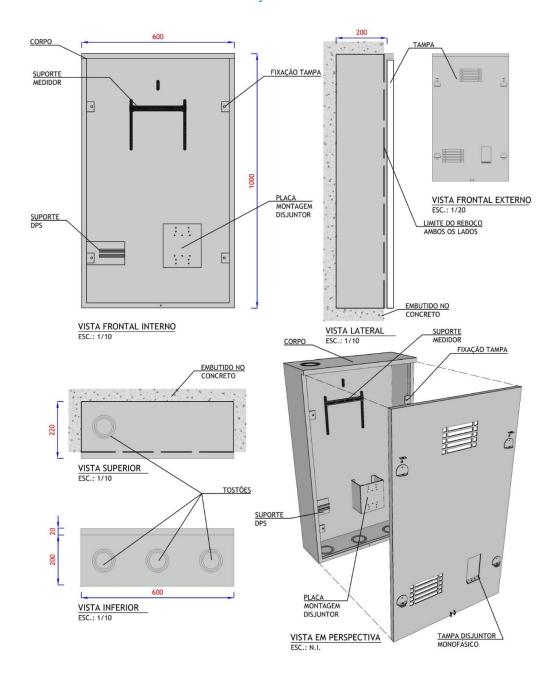
DESENHO 36 - Caixa de Medição Individual - Tipo CMI-02 - Esquema de ligação Elétrica

DESENHO 37 - Caixa de Medição Individual - Tipo CMI-03

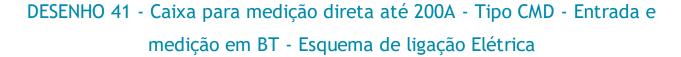



OBS.: É PERMITIDO EM TODAS AS DIMENSÕES TOLERÂNCIA +5 OU -5 MILÍMETROS.

NOTA:

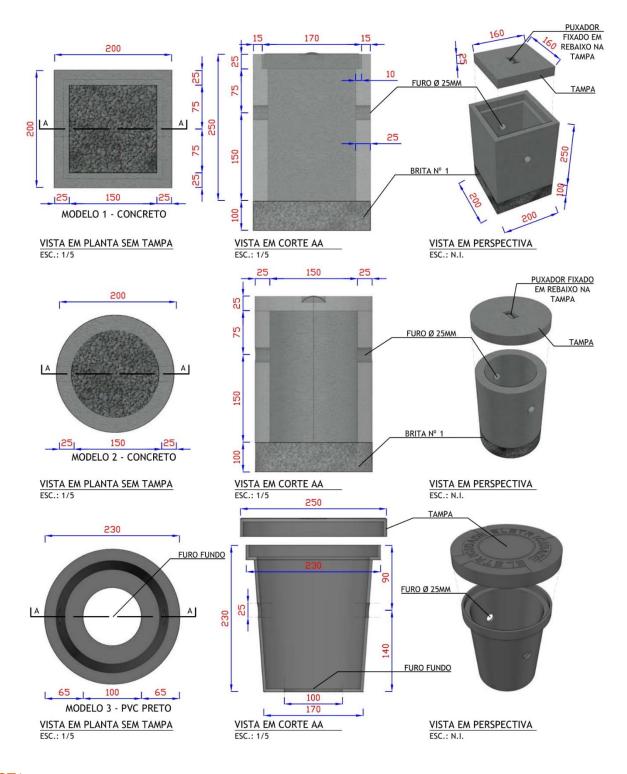


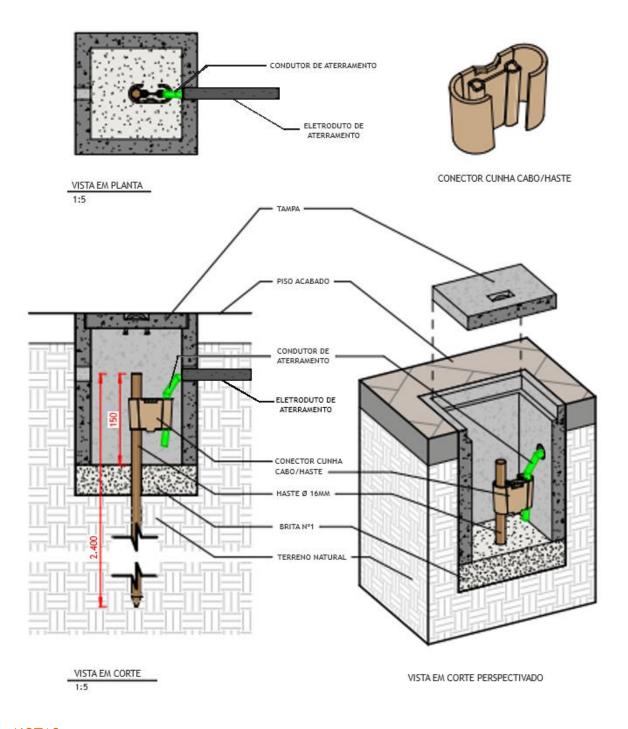
DESENHO 39 - Caixa de Medição Individual - Tipo CMI-03 - Esquema de ligação Elétrica Polifásica



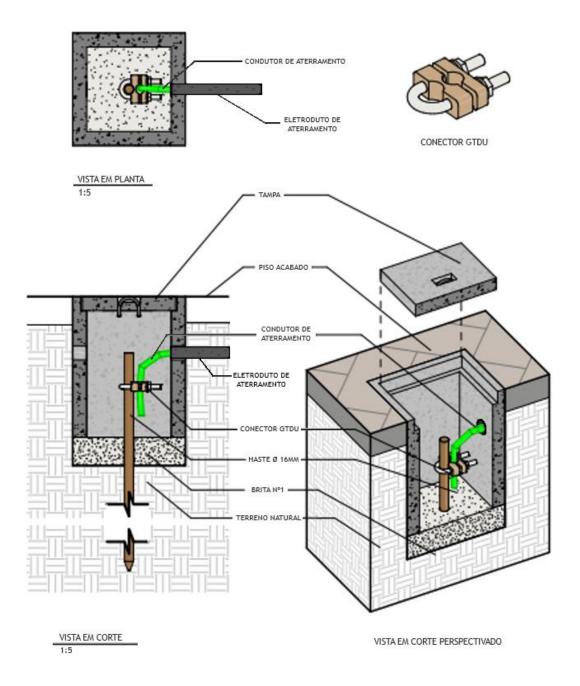
NOTA:

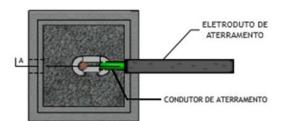
DESENHO 40 - Caixa para medição direta até 200A - Tipo CMD - Entrada e medição em BT

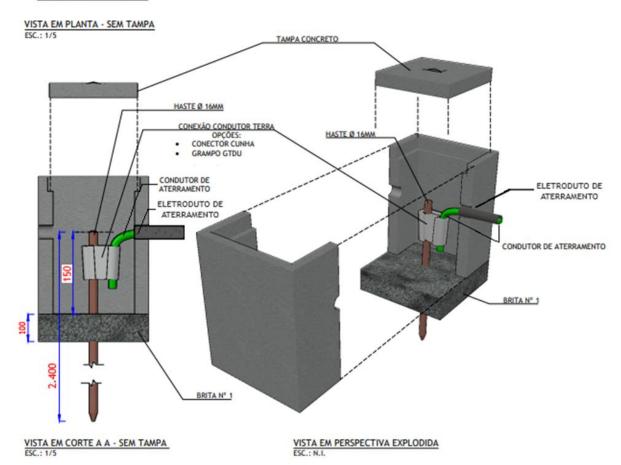

- I. As caixas de medição devem ser confeccionadas com chapa de espessura mínima de 1,2 mm ou n.º 18 U.S.G.
- II. Quanto ao acabamento, a caixa deverá ser desengordurada, fosfatizada e pintada eletrostaticamente na cor bege ou cinza.


- I. As caixas de medição devem ser confeccionadas com chapa de espessura mínima de 1,2 mm ou n.º 18 U.S.G., a solda deverá ser contínua.
- II. Quanto ao acabamento, a caixa deverá ser desengordurada, fosfatizada e pintada eletrostaticamente na cor bege ou cinza.

DESENHO 42 - Caixa de aterramento - Modelos


I. Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.




- Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.
- II. A conexão cabo haste deverá ser revestida por massa de calafetar

- Na caixa de inspeção para aterramento utilizar a tampa de aço galvanizado ou concreto, onde tiver a passagem de pedestre.
- II. A conexão cabo haste deverá ser revestida por massa de calafetar

12. ANEXOS

ANEXO I - Declaração de compromisso - Ramal subterrâneo

DECLARAÇÃO DE COMPROMISSO - RAMAL SUBTERRÂNEO

Cidade., Clique ou toque aqui para inserir uma data(Ex: 20/11/2019)..

À ENERGISA.

Eu,

Nome: Digite aqui o nome do Declarante.

RG: Digite aqui o RG do Declarante. CPF: Digite aqui o CPF do Declarante.

Proprietário do imóvel Situado à

Endereço: Digite o endereço do Imóvel em questão.

Número: Número **Complemento:** Complemento **Bairro:** Digite o bairro **CEP:** Digite o CEP. **Múnicípio:** Digite o Município. **UF:** Digite a UF.

Venho com a presente solicitar a conexão do ramal subterrâneo com a rede da concessionária para o supracitado imóvel.

Outrossim, concordo em que todas as despesas necessárias para instalação do ramal subterrâneo, devam ocorrer por minha conta. Caso necessário, comprometo-me a providenciar a remoção ou substituição do ramal subterrâneo no máximo em 10 (dez) dias contados a partir da data em que essa Concessionária me notificar a respeito. Ao assumir o presente compromisso, declaro-me também ciente de que findo o prazo aludido, na falta das providências que me couberem, essa Concessionária poderá efetuar o desligamento da instalação em apreço independente de outro aviso sem que, do desligamento em tais circunstâncias, me decorra direito de reclamação por qualquer título.

Atenciosamente,

DIGITE O NOME DO RESPONSÁVEL PELA ASSINATURA.

NOME: Digite o nome da Testemunha 1.

CPF: Digite o CPF da Testemunha 1.

TESTEMUNHA 1

NOME: Digite o Nome da Testemunha 2.

CPF: Digite o CPF da Testemunha 2

TESTEMUNHA 2

ANEXO II - TERMO DE AUTORIZAÇÃO E DE RESPONSABILIDADE MÚTUA

TERMO DE AUTORIZAÇÃO E DE RESPONSABILIDADE MÚTUA

CEDENTE:	CPF:	
PROPRIEDADE:	REG, INCRA:	
REGIÃO:	MUNICÍPIO:	
CESSIONÁRIO:	CPF:	
PROPRIEDADE:	REG, INCRA:	
REGIÃO:	MUNICÍPIO:	

Pelo presente "Termo de Autorização e de Responsabilidade Mútua" e na melhor forma de direito, fica estabelecido, entre as partes acima, o seguinte.

- O CEDENTE possuidor de uma linha condutora de energia elétrica, que serve a sua propriedade acima citada, concorda e autoriza ao CESSIONÁRIO a ligar na referida linha, um ramal para fornecimento de energia à sua propriedade.
- 2. O CEDENTE, por meio deste documento, concorda e autoriza a realização de todas as modificações necessárias em sua linha, incluindo a troca de postes e acessórios, para a instalação do novo ramal que servirá à propriedade do CESSIONÁRIO.
- 3. O CESSIONÁRIO, ao receber, como de fato recebe, esta concordância e autorização do CEDENTE, por sua parte concorda que todas as despesas decorrentes de serviços de manutenção, reparos, acidentes, danos a terceiros, ou qualquer outro tipo de despesa que hajam no trecho da linha do Cedente, que vai do ponto de partida do seu ramal até a derivação do ramal na rede da Concessionária, sejam divididas em partes iguais entre o CEDENTE e o CESSIONÁRIO.

- 4. Ambas as partes concordam que o fornecimento de energia elétrica à propriedade de uma das partes seja suspenso pela CONCESSIONÁRIA, caso á mesma constate defeito na linha de distribuição e/ou ramal, ou mesmo quando na instalação interna de uma das partes, se estiver prejudicando a outra.
- 5. Ambas as partes concordam em que a linha serve ao CEDENTE e a que servirá ao CESSIONARIO ficarão definitivas como intermediarias de transporte de energia elétrica, ainda que aos mesmos não mais interesse, por qualquer motivo, que as obrigações e responsabilidades relativas ao novo ramal ficarão a cargo do CESSIONÁRIO.
- 6. Fica estabelecido entre as partes que o contido no presente TERMO é de caráter irrevogável, independente de outros entendimentos e será garantido por si, seus herdeiros e sucessores.
- 7. E, por haverem ajustado e combinado, mandaram elaborar este instrumento em 4 (quatro) vias de igual teor, que depois de lidas e achadas conforme, irão assinadas pelas partes juntamente com as testemunhas abaixo, a tudo presentes.

, de	ede
CEDENTE	CÔNJUGE
CESSIONÁRIO	CÔNJUGE
TESTEMUNHAS:	
CPF	CPF

HISTÓRICO DE VERSÕES DESTE DOCUMENTO

Data	Versão	Descrição das alterações realizadas
20/10/2017	5.0	Revisão Geral
29/12/2017	5.1	Ajustes de formatação, textos e desenhos.
10/06/2019	6.0	 Revisados itens 1, 3,2; 3.3; 4; 5.2; a 5.11; 5.17; 5.18; 6; 6.3.2; 7; 7.2; 7.3; 9; 16. Revisados Tabelas: 01 a 24; Revisados Desenhos: NDU.001 a NDU.001.38. Acrescentados itens 3.1; 5.1; 5.12 a 5.14; 6.3.1; 6.3.3; 6.3.4; 7.1; 9.2.3; 11.2; 11.3; Acrescentados Tabela 25. Incluídos DR e DPS, EAC e ERO.
16/09/2019	6.1	Alterada Tabela 29 e Item 5.14.
02/12/2019	6.2	 Revisão item 11.2; Retirada da Tabela 29; Ajustes nos desenhos 27, 28 e 36.
01/11/2020	6.3	 Correção de referências cruzadas da ABNT; Ajuste nos layouts das Tabelas 16 a 23; Correção/adequação dos Desenhos NDU001.30 e NDU001.31.
01/11/2024	7.0	 Revisão Geral; Adequação à Resolução Normativa n°1000/2021 da ANEEL; Alteração do escopo; Modificação dos itens da Tabela 4; Adequação da Tabela 9; Inclusão dos tópicos Atendimento e Critérios para execução da entrada de serviço; Inclusão das Tabelas 26 e 27; Inclusão da caixa de medição individual - Tipo CMI-03; Reorganização e revisão dos desenhos;

